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NOMENCLATURE*

Matrices

[ol

[E]

Matrix for conversion from inertial reference to orbital reference

frame. Elements, aij.

Matrix for conversion from inertial reference to balloon body axis

coordinate system. Elements, bij.

Matrix used to specify orientation of balloon magnet with respect

to balloon body axes. Elements, cij.

Matrix used to convert components outputted from magnetic torque

subroutine to magnetic components along orbital reference system.

Elements, dij.

Matrix used to convert from orbital reference frame to body axes.

Subscript b denotes balloon body axes while subscript m denotes

magnet: body axes. Elements, eljb, eij m.

Matrix to define solar vector components along inertial reference

frame. Elements, _lj.

Matrix for conversion from orbital reference frame to balloon

magnet body axes. Elements, hij.

Coordinate Systems

Reference frame for derivation of solar torque. The i axis is

directed along the longitudinal axis of the balloon. The 3 axis

is perpendicular to the solar vector and k forms a right-handed

orthogonal system.

I, in, w Earth reference frame where i is directed from the geocenter to

the_point on the equator at the Greenwhich meridian;in'iS normal

to i and in the equatorial plane and w points along the north

pole.

r, p, q Orbital reference frame where r is directed fromthe geocenter

alon_ the local vertlcal_ p is directed along t_e velocity vector

and q is directed along the vehicle's orbital angular velocity

vector in the right-handed screw sense.

u,v,w Inertial reference frame where u is directed from the hellocenter

to the spring equinox position of the geocenter; _ lies in the

equatorial plane and is directed from the heliocenter to a point

north of the summer solstice position of the geocenter, w is

directed from the geocenter to the north pole.

* (FORTRAN language has been omitted unless it is used in _ther places than

in section 5.1.5.1).
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Xl' YI' Zl

x2' Y2' z2

m m

x3' Y3' z3

English Symbols

a

ao

av

A

APOG

Am

b

B

BR

B@

B0

dal

db i

df

DL

dA

e

E

E/c

Balloon yaw, pitch and roll body axes respectively.

Balloon magnet body axes where x2 is the dipole axis; Y2 and z2are aligned along _i' E1 for = _= 0.
y--

Magnet body axes where _3 is the dipole axis.y_jo and zoo are aligned

along YI' Zl for zero balloon and magnet attitude angles.

Semi major axis of vehicle orbit.

Radius of loop or disc for eddy current analysis.

_idth of wire.

Area of loop or disc.

Apogee of vehicle orbit.

Area of magnet°

Damping coefficient in ft# sec.

Magnetic flux density.

Radial component outputted from magnetic torque subroutine.

Magnetic component directed along the local meridian, positive

in the direction of the velocity vector which is outputted from

the magnetic torque subroutine.

Magnetic component directed along the local latitude arc, posi-

tive in a westerly direction when the vehicle is moving south

to north which is outputted from magnetic torque subroutine°

Density of aluminum.

Density of bismuth

Density of fluid

Time in days from winter solstice to orbital injection_

Incremental area°

Orbit eccentricity.

Eccentric anomaly, subscript o indicates value at orbit injection.

Ratio of the solar flux density to the velocity of light, also

called Po"
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F

F 1 thru FI3

Gx 1, Gy 1, Gzl >
Gx3, Gy3, Gz3

GMTT

h

h o

H

H
r

H
P

H
q

i
o

IB

o

IB

ID

k

K

K I

i
m

L

LAT

Force on the balloon due to solar torque. Subscript o denotes
force on the inmer surface of the mesh balloon due to the solar

rays passing thru the top surface.

Intermediate parameters used to shorten solar torque equations.

Intermediate variables used to shorten Euler's dynamical equations.

Instantaneous Greenwich Mean Time.

Moment arm from arbitrary location of the center of rotation

to each element dA of the surface which is used for the compu-

tation of solar torques. Superscript, prime, denotes corres-

ponding moment arm for bottom spherical segment of lens.

Orbital angular momentum per unit mass.

Magnetic field intensity.

Magnetic component along r.

Magnetic component along p.

Magnetic component along q.

Current.

Moment of inertia in slug ft 2. Subscripts xxl,. .... ,yz 3 denote

moments and cross products around subscripted balloon and magnet

body axes.

Pitch and Roll Moment of inertia of vehicle.

Yaw moment of inertia of vehicle.

Damper moment of inertia.

Ratio of pole length to actual length.

Universal gravitational constant multiplied by the mass of earth.

Constant used to define ratio of closed area to open area of mesh

material.

Length of magnet.

Length of gravity rod.

Latitude of projection of satellite on earth.
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LONG

m

M

M

O

eo

rd

r
O

rs

R

Rc

S

Sxl, Syl , Szl

t

to

tout

T

T I thru T6

V o

Wt

Longitude of projection of satellite on earth.

Magnet pole strength.

Magnetic moment. Subscripts 2 and 3 denote magnetic moment of

balloon and independent magnets respectively. Subscript e

denotes magnetic dipole moment of earth. M sometimes appears

as a magnitude of I_.

Mean anomaly, Subscript o denotes value at orbit injection.

Unit vector normal to surface of balloon, positive toward center.

Center of curvature for top spherical segment of lens. Superscript,

prime, denotes center for bottom spherical segment.

Solar radiation constant; see E/C.

Radius of damper sphere.

Radius of curvature of spherical segment of balloon,

D

Direction cosine between r and s.

Distance from geocenter to vehicle, magnitude of r, also called r.

Perpendicular distance of satellite from earth-sun line.

Solar vector.

Direction cosines between solar vector and balloon body axes.

Time.

Time at injection.

Elapsed time since injection for computer print out.

Torque. Subscripts dl, Sl, ml, tl, gl' m3' d3' Xl'''''z3' i, j, k

or combinations of the preceding denote components due to a speci-

fied torque and along specified axes.

Amplitude of arbitrary torques.

Velocity.

Weight; subscript s denotes weight of inner sphere while subscript ,

o denotes weight of outer sphere.
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X o

xL

YL

YlO

zL

z
i0

m

Offset measured along i axis from geometrical center of lens to

arbitrary center of torque.

Distance from center of curvature of spherical segment to geo-

metrical center of lens. Superscript, prime,denotes corres-

ponding distance from center of curvature of bottom segment of lens.

Offset measured along ] axis from geometrical center of lens

to arbitrary center of torque.

Offset measured along the _I axis from geometrical center of

lens to arbitrary center of torque.

n

Offset measured along k axis from geometrical center of lens

to arbitrary center of torque.

Offset measured along the _i axis from geometrical center of

lens to arbitrary center of-torque.
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Greek Letters

7

A
6
6

O

O
m

Op

O r

Oy

m

Angle between the Yl and j axes.

m

Rotation about Y2 axis which represents one of the degrees Of

freedom used to specify the orientation of the balloon magnet

with respect to the balloon body axes.

Rotation about the z I axis which represents one of the degrees
of freedom used to specify the orientation of the balloon magnet

with respect to the balloon body axes.

Angle between satellite yaw axis and local vertical to earth.

Gap distance between the inner and outer spheres of the magnet.

Angle between ecliptic and equatorial planes.

Electro motive force (emf).

Orbital central angle measured from right ascension. Subscript o

denotes orbital angle at perigee measured from ascending node.

Subscript i denotes orbital angle at in_ection measured from

ascending node. Subscript 2 denotes vehicle orbital posit_on

at injection measured from perigee.

Angle denoting position of sun in i, k plane measured from i axis.

Angle between the magnetic axis and the local line of flux.

Pitch attitude angle,, Subscript b or m refers to balloon or magnet

attitude angle respectively°

Roll attitude angle. Subscript b or m refers to balloon or magnet

attitude angle respectively.

Yaw attitude angle. Subscript b or m refers to balloon or magnet

attitude angle respectively.

Integration variable for solar torque analysis which denotes an

angle along a "longitude" line.

Fluid viscosity.

Constant equal to 4 x 10 -7 Henry/meter.

Orbit inclination.

Polar angle of satellite in polar orbit. _in a unit vector

normal to _ in direction of satellite velocity.
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d

T

T
o

T'
o

rR

¢

@I thru _6

Constant, 3.1416.

Solar reflectivity parameter. Subscript s and d refer to specular

and diffuse reflection coefficients of the surface material of

the balloon.

Orbital angular position of earth measured from winter solstice

position.

Projection of _ in equatorial plane.

Resistance per unit length of wire.

Orbital period. Also used to denote time constant in orbits.

Distance from center of one wire to center of next wire.

Thickness of the conducting disc.

Wall thickness of gravity rod.

Regression period in days.

Complement of lens half angle.

Magnetic flux.

Phase angles of miscellaneous torques.

Integration variable along a "latitude" line of the sphere.

Subscript c denotes sun shade line on balloon.

Right ascension. Subscript I denotes Greenwich hour angle at

injection. Subscript 3 represents projection of the orbit central

angle measured from equatorial crossing on the equator.

Orbital frequency.

Frequency of disturbance torques.

Angular body rates where subscripts x I ...... z 3 denote rates

around respective balloon and magnet axes. Subscripts bx3 ..... bz3

denote balloon body rates resolved along magnet axes; subscripts

mxl ... n_zl denote magnet body rates resolved along balloon axes.

xiii/xiv



1.0 INTRODUCTION

2.0

A preliminary study of the feasibility of passively orienting and damping

the large lenticular satellite by the utilization of earth's gravity and mag-

netic fields has been completed as Phase I of Contract NAS 5-2324 with

NASA/Goddard. This study, assigned the acronym POLES (Passively Oriented

Lenticular Satellite), was accomplished during the scheduled period 21 June 1963

to 30 August 1963. This report documents the results of this contract phase,

consistent with the final project report specifications of NASA document

TID-S-100.

System performance analysis and damper design analysis and test will be

carried out as follow-on to Contract NAS 5-2324, and the results will be reported

on in monthly progress reports and in a final report to be submitted at the

end of Phase II.

SUMMARY AND CONCLUSIONS ,_O O o_//y

The system investigated was a 267 foot diameter lens (200 foot radius

of curvature) made of wire mesh material. Gravity gradient rods extending from

top and bottom provide the required moments of inertia for accurate gravity

gradient stabilization. The Magnetically Anchored Viscous Fluid Damper, con-

ceived and developed by General Electric Company was taken as the passive

damper model.

The major objective of the five tasks identified in the statement of

work (Reference i) was the development of analytical and machine program tools

for subsequent system performance analysis.

A large angle, eight degree of freedom, digital computer program was

developed to numerically integrate the differential equations of motion. Also,

a characteristic root solution to the linearized planar motion equations was

progran_ned for conducting parametric studies. Equations for the significant

disturbance effects produced by solar pressure, eddy currents, and magnetic

perturbations were derived and parametric studies and weight estimates were

made to provide for system parameter tradeoffs.

A considerably more extensive performance study is required to verify

the performance capabilities of the system for decay from large errors and

the steady-state pointing accuracy when the satellite is subjected to

eccentric orbits and various disturbance torques.

No attempt was made in this study to solve the problems associated with

balloon inflation or of structural attachment of the gravity gradient rods and

damper to the balloon skin. Purely from an attitude control standpoint, the

passive stabilization of the lenticular balloon to an accuracy of ! 3 degrees

does appear to be feasible. The total weight of the attitude control system

including gravity gradient rods, their extension mechanisms and power supplies,

and the passive damper would be approximately 90 to 150 pounds.

i



3.0 PASSIVEATTITUDECONTROLSYSTEMDESCRIPTION

3.1 GENERAL

The balloon was assumedto be madeof two 84° segments of a 200 foot
radius sphere joined together to form a lenticular shape, with principal
momentsof inertia of 178,000 and 90,000 slug ft. 2. The system configuration
selected for stabilizing the lenticular balloon consisted of a pair of gravity
gradient rods extended vertically (one up, one down) from the centers of the
two spherical segmentsand a magnetically anchored viscous fluid damperwhich
could be mountedeither at the balloon skin line or on an internal support
structure at the center of the balloon. (See Figure 3_I)

3.2 GRAVITY GRADIENT ROD DESCRIPTION

The gravity gradient rod is a tubular element formed out of beryllium

copper, steel or a silver alloy strip metal heat-treated into a ciDcular

section in such a manner that the edges of the material overlap by approximately

180 degrees. The tubes under consideration for this application are about

i inch in diameter with .005 inch thick wall. This provides an element with

a bending strength almost equivalent to that of a seamless tube of the same

diameter and thickness. The rods when retracted are stored in a strained,

flattened condition by winding on a drum. As the flattened strip is extended

it coils into a tubular shape as a result of pre-stressing. The elastic

energy in the flattened strip and the energy generated by rolling the strip

in the drum supplements the motor power in extending the rod° One-shot

batteries would be carried to drive the extension motors.

The motor controls the rate of erection, in_res ample erecting force,

and allows retraction during ground testing. Spring retaining belts keep the

strip wound tight on the drum in all extension positions. Other guidance

devices ensure that the strip pays out and coils smoothly and is properly

directed. These devices also support the extended rod. Light weight materials

are used throughout the structure. The side plates are aluminum° Nylon,

melamine and fiberglas are used for other parts. All ball bearings are of the

double=shielded type, having low-vapor-pressure grease lubricants. A telemetry

potentiometer is used to indicate the length of rod extended° Limit switches

will cut off the power at full extension and retraction° Due to the irrever®

sibility that results from the large reduction in the motor gear head, the

rod is held at the position where the motor stops.

The system described above is known as the STEM (Self-storing Tubular

Extendible Member) technique which has been under development by DeHavilland

Aircraft of Canada, Limited for a number of years° Many configurations have

been produced for use as antennae and successfully flight demonstrated on

such programs as the Alouette S.27 Topside Sounder Satellite and the Mercury

Capsule°
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Beryllium copper tubes were used on the Alouette Program and steel tubes were
extended on Mercury Capsules. For the lenticular balloon application, however,
where very long rods are required for obtaining the high momentsof inertia, a
silver alloy rod currently under development by General Electric Companyunder
contract to NASA-AMESis recommendedbecause of its high thermal conductivity
and solar reflectivity. Beryllium copper rods up to 850 feet in length have
been built by DeHavilland to be used as antenna; however, thermal bending would
produce a maximumtip deflection of this rod of approximately 330 feet. By
using the silver alloy rod, the tip deflection of an 850 foot rod would be
only about 50 feet. Placing a dead weight on the end of the rod can achieve
the desired momentsof inertia with shorter rods. The selection of the length
to be used on the lenticular balloon would require an optimization study and
trade off between system weight and thermal bending deflection.

3.3 DESCRIPTION OF DAMPER

The magnetically anchored viscous damper, see Figure 3_2, consists of

three elements: (a) viscous damper, (b) magnetic anchor, and (c) magnetic

suspension. The device is completely passive, requires no external sources

of power for operation, has no rubbing parts and is ideally suited for long

life reliable operation in a space environment. None of the elements incor-

porated represents an advance in the state of the art or represents basically

new and untried concepts.

The viscous damper consists of two concentric spheres with a viscous

fluid between them. When there is a difference in angular velocity, there will

be a viscous shearing action which results in a dissipation of energy. In

order to produce a difference in angMlar velocity of the spheres and to be

assured that they do not eventually "lock-up" on each other, the inner sphere

is fixed to the earth's field by the magnetic anchor. This is achieved by

a bar magnet attached to the inner sphere, which acts essentially as a compass

needle, always aligning itself parallel to the earth's magnetic field. The

magnitude of torque exerted by the magnet is a function of its magnetic moment

and the magnetic field intensity of the earth: T = MH sin 8 where
m

M is the magnetic dipole,

H is the earth's magnetic field intensity, and

e is the angle between the magnetic axis and the local line of
m

flux.

In order to assure the concentricity of the spheres and to prevent any

possibility of rubbing under operating conditions, the spheres will be separated

magnetically. This separation will be attained by a magnetic suspension in

which a diamagnetic material is repelled by a magnetic field° The outer sphere

will be made of a diamagnetic material, and the magnetic field will be produced

by permanent magnets attached to the inner sphere.

4
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3.3.1 Viscous Damper

Damping will be obtained by the relative motion of two concentric spheres

which are separated by a viscous fluid. The concept of utilizing the motion of

concentric spheres to produce damping is not new in the state of the art. It

results in a small, lightweight, and most important, a completely passive device.

For sphere of radius rd, cm and angular velocity _ radians per second, it
can be shown that the damplng torque is

T = 8 _ _ rd4_ dyne cm. (3.i)

36
where _ is the viscosity of fluid;

is the gap between the inner and outer spheres.

There are three general groups of fluids which can be considered for the

damping media: hydrocarbons, silicones and fluorocarbons. The selection of

fluid will depend upon its inherent physical and chemical properties together

with the system requirements as to the allowable variation of damping as a

function of temperature. The silicones are the least temperature sensitive and

the fluorocarbons the most temperature sensitive. The specific gravity is

another important physical criteria. Since it is anticipated that the inner sphere

will be made buoyant, a more dense fluid could result in a smaller and lighter

over-all component. If the high viscosity-temperature coefficient of the fluoro-

carbons can be tolerated by the system requirements, then its high specific

gravity can prove to be a definite asset to the damper design.

Both the silicones and fluorocarbons show long term temperature stability,

in the absence of oxygen, up to 575°F. They are not corrosive when in contact
with the usual materials of construction. These fluids are in current use for

aerospace application and are extensively used as damping media. The viscosity

of the silicones and fluorocarbons will change slightly with time due to exposure

to the radiation environment. However, the bismuth shell used for diamagnetic

suspension also acts as an excellent radiation shield, holding the viscosity change

to less than 3 per cent in three years.

3.3.2 Magnetic Anchor

The magnetic anchor serves to hold the inner sphere fixed while the outer

sphere, which is attached to the spacecraf% rotates. The magnetic anchor locks

the inner sphere to the earth's magnetic field by means of a longitudinally mag-

netized bar magnet attached to the inner sphere. This bar magnet act as a magnetic

dipole which will be torqued by the earth's field. The use of a magnetic dipole

to orient a satellite is not a new concept; it has been used successfully in Transit

IB and 2A, where an Alnico V bar magnet 4 inches long, and i inch in diameter

was used.



4.0 PARAMETRICDAMPINGSTUDIES

4.1 CHARACTERISTICMETHODOFSOLUTION

Application of the root locus technique to the POLESsatellite requires the
derivation of the linearized equations of motion. The equations derived for
the three axis computer program can not easily be linearized, and if linearized,
would result in a set of equations which is unlikely to be amenableto optimi-
zation. It is simpler to make the appropriate assumptions prior to derivation.
The analysis is given in Appendix I, but the assumptions madein the analysis
will be discussed below.

The system being analysed consists of two bodies, each of which has three
degrees of freedom (excluding orbital freedoms). Two three degree of freedom
systems result in six second order dynamical differential equations. It is not
practical to linearize all six equations, and only those degrees of freedom
which are important should be linearized. The yaw position of the vehicle is
irrelevant from the satellite mission standpoint, and roll motions appear on
the yaw axis because of orbital rate, preventing accurate linearization. There-
fore, the equations describing the motion in pitch have been linearized. However,
pitch and roll motions are sufficiently similar that parameters optimum for pitch
are nearly optimum for roll.

The analytical model of the earth's magnetic field assumedin the analysis
is a simplified magnetic dipole. The simplified dipole permits the equations
to be solved, but excludes manyof the characteristics of the field. One such
characteristic is the variation of the Earth's magnetic field due to the location
of its equivalent dipole axis. The dipole magnet is not located on the Earth's
spin axis, nor does it pass through the geographic center of the earth. As a
consequence the magnetic field rotates every twenty four hours (with respect to
inertial space), causing a change in the direction and magnitude of the field
at any fixed point in space. A satellite in orbit will experience an additional
field variation due to a change in field strength with magnetic latitude. If
the orbit is in the plane of the magnetic equator, the field strength will be
minimumand constant° For a polar orbit, however, the field strength will vary
from a minimumat the equator to a maximumat the poles (equal to twice minimum).
For orbital inclinations between zero degrees (equatorial) and ninety degrees
(polar), the field strength will change from the minimumto a maximumdependent
upon the orbital inclination.

A third characteristic of the magnetic field which must be simplified for
analysis is the variation of the orientation of the lines of flux of the field.
Consider the damperof the satellite in a polar orbit about a dipole magnet coin-
cident with the spin axis of the earth. At the North Pole, the south seeking
pole of the damperwill be_pQinted toward the North Star (Polaris). At the South
Pole, the south seeking pole of the damperwill be pointed toward the North Star
and toward the earth, which is exactly one inertial rotation. Hence, for every
orbits the dampermakes two rotations, or its rotational._teis twice orbital.
This is the average rate assumedin the analysis. It should be pointed out, however,
that the actual rotational rate varies considerably throughout the orbit, since the
magnet follows themagnetic lines of flux,,not the local vertical. The rotational
rate is largest at the magnetic equator and least at the poles. Since the damper is
coupled to the vehicle by a viscous damper, the variation in damperrate appears
as a disturbance torque on the vehicle.

?



Qualitative (as well as quantitative) analysis indicates that the disturbance
torque is periodic with a period of approximately 2 _/2_o, where _o is orbital
rate. If the orbital inclination is not ninety degrees, the magnet rotates out of
the roll-yaw plane, and its rate of rotation in pitch is altered. Hence for orbits
other than polar, a planar analysis is not particularly meaningful.

As mentioned previously, the simplified dipole excludes manyof the character-
istics of the magnetic field from the analysis. However, the effect of these
characteristics on the vehicle can be included. The planar analysis was restricted
to polar orbits to avoid rotation of the dampermagnet out of the roll-yaw plane,
and the change of the magnetic field with latitude in this orbit is compensated
for by using an average field strength for the orbit. (See equation 1-12 in Appendix I).
The effect of the non-uniform rotation of the flux lines is included by assuming a
constant rate of twice orbital and employing a_dynamic amplification factor. This
factor will be discussed later in the section.

Additional limitations of a secondary nature noted in Appendix I are a circular
orbit and equal pitch and roll inertias. These limitations do not significantly
restrict the analysis.

With the above limitations and restrictions, the dynamical equations were
derived and linearized about a final steady state position. The linearized equa-
tions were put in operator notation and a fourth order algebraic equation (quartic)
was derived. By an appropriate change of time scale, the dynamical equations were
non-dimensionalized, and the roots to the quartic, which was solved on a computer,
are consequently non-dimensional. The roots to the quartic are either complex con-
jugates with negative real parts, or negative real roots. The imaginary part of
the complex root is the ratio of the dampednatural frequency to the orbital fre-
quency, and the real part (and/or real root) is the ratio of the logarithmic decre-
ment to orbital frequency. The logarithmic decrement is the exponent of the e
term preceding the sine term in the closed form solution, and since exponential
decay is desired, it should have a negative value. The reciprocal of the logarithmic
decrement is the time constant in terms of orbital rate. Introducing a factor of
2 _ , the time constant can be put in terms of orbital period or simply orbits.

There are four roots to the quartic, two of which describe the dampermode
and two of which describe the satellite mode. The differences in time constant
and natural frequencies clearly indicate which numbers apply to the damperand
which apply to the satellite.

The steady state conditions given by Equations 1-32 and 1-33 in Appendix I are
average or static conditions used in the dynamic analysis. From the vehicle stand-
point this angle is an error which cannot be compensatedfor because the yaw position
of the balloon is not specified (i.e. there is no way of determining if the error is
to the !'right" or "left" of the yaw axis). In addition to this static error, there
is a dynamic error caused by the variations in the magnetic field mentioned earlier
in the report° Themagnitude of the dynamic error is dependent upon the ratio of
the forcing frequency to natural frequency. The forcing frequency is twice orbital,
but the natural frequency of the satellite is dependent upon its yaw inertia ratio.
Considering the maximumamplitude of the forcing function to be equal to that causing
the error, the maximumanticipated error can be determined as a function of yaw
inertia ratio. The analysis can be found in Appendix II.



A steady state error can also be determined for the magnet, but since the
exact position of the magnet is of no concern, its error has been termed an offset
and has not been limited to small angles. As will be indicated later, however,
this offset does affect the performance of the damper. The analysis of the offset
can be found in Appendix II.

4.2 SIGNIFICANTSTEADYSTATEPERTURBATIONS

The only steady state perturbation discussed in section 4.1 was that due to
variations in the magnetic field. Thesewere included in that section because of
the close relationship between magnetically induced oscillations and the satellite
damping time. Other steady state perturbations exist which are not associated
with the magnetic field, the most significant of these being solar torques and
orbiteccentricity° Of the two, orbit eccentricity appears to be the largest. The
effect of these on the satellite performance and optimization will be discussed in
sections 4.3 and 4.4.

4.3 SYSTEMPARAMETERTRADEOFFS

Computer solutions to the quartic indicated that the natural frequency of the
satellite was unaltered by the presence of the damper. The natural frequency can
therefore be computed from the linearized three axis equations for a single body
under the influence of gravity gradient torques. Figure 4-1 is a plot of the
natural frequencies for the three oscillatory modesas a function of the satellite
inertia ratios. The right hand boundary of this frequency map represents the
lenticular vehicle which has equal pitch and roll momentsof inertia. The region
of bi-stability is a region where the satellite has a stable position two 90° ro-
tations away from the desired position. As a consequence this region will not be
considered.

For all but the most lightly dampedsatellite, the damperwas overdampedand
had no natural frequency. Even where the natural frequency did exist, however,
it was not plotted because it is not relevant to the vehicle behavior_ In general
its oscillation frequency is twenty to thirty times higher than that of the satellite.

The results of the steady state analysis are given in Figures 4-2 and 4-3. The
steady state error shownin Figure 4-2 is a combination of static error and dynamic
oscillations and should be a worst case. Preliminary three axis runs indicate that
the linearized analysis is approximately correct. The optimum yaw inertia ratio
to produce the least steady state error for a fixed dampingcoefficient is between
.2 and .3° The value of the steady state error can be selected as an input, and
the necessary damping determined. However, the damping also mffects the decay time
of the satellite and a tradeoff betweendecay time and steady state error is required.
A complete tradeoff includes other steady state perturbations such as solar torques
and orbit eccentricity. Orbit eccentricity appears to be the most significant
factor (Figure 4-4) and may place a lower limit on accuracy capability. If so, there
is no advantage to keeping the magnetically induced error small in comparison with
the orbit eccentricity error. Selecting the allowable magnetically induced error
to be of the sameorder of magnitude as the orbit eccentricity error permits reduction
of the satellite time constant (Figure 4-10).
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Figure "4-3 is the offset of the damper magnet from the magnetic field.

The analysis which resulted in this plot is conservative, but the final system

may be as conservative or as marginal as desired by the appropriate selection

of offset. Preliminary three axis runs indicate offsets of twenty degrees or

less all have identical damping characteristics. The "knee" of the curves in

Figure 4-6 and 4-7 occurs at an offset of ninety degrees and cannot be used.

The damper performance at intermediate values has not been determined, but offsets

of forty-five degrees do not appear possible. A high offset allows a smaller

magnet strength to be used, and since the magnet weight and damper weight both

depend upon the magnet strength, high offsets result in lightweight dampers.

Figure 4-5 is a preliminary weight estimate of the damper as a function of

magnet strength. _e maximum permissible offset will be determined by the three

axis computer program. The damping parameter does not directly affect the

damper weight, but a reduction of the damping parameter permits a similar reduction

of magnet strength (Figure 4-3).

The real parts of the quartic roots which apply to the satellite were normalized

to an orbit scale and plotted in Figures 4-6, 4-7, and 4-8. The introduction

of the new time scale into the analysis (Appendix I) has permitted the use of

non-dimensional parameters. Hence all the results are independent of orbit, in-

cluding both the steady-state response and the transient response.

Of the four parameters b/IB_o, IB/ID, IB°/l B, and M/IB, only the damper

inertia ratio, IB/ID, has been excluded from all the figures. It was found to

be irrelevant° With the parameters of Figure 4-7 for example, changing the

damper inertia ratio from 104 to 106 , decreased the real root by .01 per cent.

For all practical purposes, therefore, the damper inerti_ for the range of satellite

inertias under consideration, has no effect on performance and need not be considered,

further°

Figure 4-6 shows the performance characteristics of a vehicle with a constant

magnet parameter, M/I B of two, and several yaw inertia ratios. For damping para-

meters less than 0°007, all the inertia ratios examined have the same time constant.

For damping levels greater than .02 a larger magnet parameter is required for

stability° Figure 4-7 is the same set of curves with a magnet parameter of four.

The result of magnet parameter increase is to shift the "knee" of the curves into

the region of higher damping parameter. Thus, all the yaw inertia ratios have

identical time constants below a damping parameter value of .015 for M/I B = 4

compared to the value of .007 for M/I B = 2.

Figure 4-8 is a composite of Figures 4-6 and 4-8 considering only one yaw

inertia ratio° A magnet parameter of eight was also included. This figure indi-

cates that if the magnet parameter is increased as the damping parameter is in-

creased, the curve reduces to a straight line (on logarithmic graph paper) which"

is the envelope of all the magnet parameter curves. The envelope is plotted in

Figure 4-9°
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The reduction of the quartic solutions to the curve of Figure 4-9 indicates

that the only parameter of significance is the damping parameter, providing the

magnet parameter is selected adequate to the task. Figure 4-8 indicates that ex-

tremely strong magnet would perform satisfactorily, but a weight penalty would be

incurred as discussed previously. Selecting the magnet parameter from Figure 4-3,

consistent with a reasonable offset, will provide adequate damping and prevent the

damper weight from becoming excessive. Optimization of the magnet offset should

provide the least damper weight for any selected damping parameter.

Since steady state damper induced error and the decay time constant both depend

solely upon the damping parameter, a cross plot of these parameters is possible.

Figure 4-10 is this cross plot, employing lines of constant yaw inertia ratio.

These lines appear because the steady state error is dependent upon the yaw inertia

ratio, whereas the time constant is not. The lines represent more than one inertia

ratio, because the steady state errors "double back" on themselves (Figure 4-2),

and attempting to plot all the lines would cloud the graph. Hence, lines repre-

senting two inertias were employed.

4.4 SELECTION OF OPTIMUM PARAMETERS

Optimization of the POLES satellite requires that weight as well as performance

be optimized. Considering Figure 4-2, a y_w inertia ratio of .25 has a minimum

magnetically induced error, and can be tentatively accepted as optimum. At the

anticipated eccentricity of .016, the steady state error would be approximately 1.5

degrees (Figure 4-4). Selecting a magnetically induced error of one degree (which

is the same order of magnitude as the orbit eccentricity error) yields a damping

parameter of .0171 and a time constant of twenty orbits (Figures 4-2 and 4-9). From

the performance standpoint this is adequate. However, with a twenty degree offset,

the necessary damping parameter requires a magnet parameter of 6.6. The pitch

moment of inertia of the POLES satellite if 712,000 slug-ft2. This inertia necessi-

tates a magnet strength of 4,700,000 pole-cm. The weight of the damper required

for this task (from Figure 4-5) is 540 lb. The satellite has a nominal weight

(excluding damper) when fully deployed of approximately 500 lb. If the damping

level is reduced, the damper weight is reduced and the time constant is increased°

Figure 4-11 is a curve of damper weight versus time constant and indicates a

sharp decline in damper weight with increasing time constant. The optimum point

should be near the "knee" of the curve and a time constant of forty orbits and a

damper weight of 170 pounds has been selected. The weight is still somewhat larger

than desired, but has been tentatively selected as an operating point. For this

operating point, the damping constant is 3.59 ib-ft-sec/rad, and the magnet strength

is 2,700,000 pole-cm.
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5.0 DEVELOPMENT OF THREE-AXIS DIGITAL COMPUTER PROGRAM

This section contains the complete description and equations for the computer

program. Some results of preliminary studies are also included.

5.1 THREE-AXIS DIGITAL COMPUTER PROGRAM

5.1.1 General

This report includes the attitude dynamical equations of a satellite, consisting

of two independent rigid bodies which are coupled through damping, and describes

an IBM 7090 computer program which solves these equations by numerical integration.

The use of the computer is mandatory because of the magnitude of the problem and

because of the nonlinearities due to cross-coupling effects and to the relations

between the external torques and the vehicle attitude and angular rates. The pro-

gram is a tool for studying the attitude behavior of the vehicle under a variety of

initial conditions and vehicle parameter values. Thus it is suitable for feasibility

studies and approximate parameter optimization.

The heart of the analysis is the set of Euler's dynamical equations. These

are written for torques, angular velocities, and angular accelerations about geo-

metric axes. Hence, the terms involving products of inertia are retained. For

the main body, the geometric axes used are parallel to hhose of symmetry, but trans-

lated so that the origin is at the center of mass of the main body.

The center of mass of the main body is assumed to follow a circular or elliptical

orbit about the geocenter in a plane whose orientation is fixed in inertial space.

The coupling effects between the vehicle's attitude motion and the vehicle's orbital

motion are neglected. An approximation to orbital regression is included.

The external torques on the main body are those due to gravity gradient, solar

radiation pressure, miscellaneous disturbances, magnetic damping and magnetic torque

due to the net dipole of satellite in the earth's field. The external torques on

the magnet are those due to its orientation in the earth's field and damping from

the vehicle° The program has sufficient flexibility for the incorporation of torques

due to other effects such as solar torques on the gravity rods, thermal bending on

the rods and eddy currents caused by the earth's magnetic field.

The solar torque subroutine, which is included, defines solar torques on a

lens shaped satellite composed of two dimensional mesh material° Equations are now

available for the three dimensional mesh material. This change will pose no problem

to the program since the net result will merely be the substitution of one subroutine
for another.

The effects of the earth's shadow are also accounted for. Whenever the vehicle

is in the earth's shadow, all solar torques are zero. In the derivation of all

solar torques and of all shadow effects, it is assumed that all of the sun's rays

in the vicinity of the earth or of the satellite are parallel, and that the intensity
of the radiation is constant.



The effects of other celestial bodies, magnetic storms, internal moving parts,
particle impacts, earth's albedo, etc. are neglected.

The angular accelerations about the body geometric axes are obtained as the
solution of Euler's dynamical equations. These angular accelerations are numerically
integrated to obtain the angular rates about the body axes. The required Euler
angular rates are calculated from the body axis rates. The necessary equations are
obtained by differentiating the equations describing the appropriate Euler trans-
formation and solving for the rates. These rates are also integrated numerically
to obtain the Euler angles. The angles used are those involved in the transformation
from the orbital reference frame to the main vehicle reference frame, and in the
transformation from the latter frame to the auxiliary vehicle reference frame.

The numerical integration method used provides for a variable integration
interval, controlled by the computer in accordance with the computednumerical
integration errors and a set of specified tolerable errors. This provides a con-
sistent balance between accuracy and economy.

The maximumdegree of flexibility in the whole program is achieved by the use
of flexible subroutines for initialization, orbital parameters and variables, time
derivatives to be integrated, numerical integration, external torques, and output.
The output maybe plotted by an X-Y plotter.

5.1.2 Vehicle Description

The vehicle has been described in section 3.0 to be basically composed of a

lens shaped mesh balloon, two gravity gradient rods and a magnetically anchored damper

system. It is intended here to define the coordinate axis system which was used in

this program to define the POLES satellite. Figure 5_I shows the satellite in a

typical orbital attitude. The following axis definition assumes zero vehicle attitude

angles. The axis from the local vertical to earth, positive away from earth, is the

vehicle yaw axis which is called _. The vehicle roll axis is directed along the
velocity vector and is defined as YI" Z--l,the vehicle pitch axis, is directed along

the vehicle_ orbital angular velocity vector; it is approximately out of the plane

of the paper in Figure5-1. To simulate any net dipole of the satellite, provision

has been made in the program for a magnet which is rigidly attached to the vehicle

with its dipole at some fixed orientation with respect to the balloon body axis.

This magnet dipole axis has been defined as _2" The _-2 and__ 2 axes are normal to

_2 and aligned along _i and _i if _2 is also aligned along x I.

The free floating magnet is defined by axes, x3, Y3 and z3. These axes are

defined in the same sense as the Xl, Yl, Zl system. The magnet dipole axis is x%.
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5.1.3 Coordinate Systems and Transformations

Several reference frames are required for the analysis. Each of these is

described in terms of a rlght-handed orthonormal triad of vectors.

The first is the inertial reference frame, described by the triad uvw, and

illustrated in Figure 5r2. _ is directed from the hello center to the spring

equinox position of the geocenter. V lies in the equatorial plane and is directed

from the heliocenter to a point north of the summer solstice position of the geo-

center. _ is directed from the geocenter to the north pole.

The angle between the ecliptic and equatorial planes is 6 = 23.45 degrees.

The orbital angular position of the earth, measured from the winter solstice po-

sltion, is designated _. The unit vector s'-,directed from the heliocenter to the

geocenter, is expressible in terms of a row-matrlx IF] .

s = F (5.1)

The elements of the matrix IF] are

fll = sing

f12 = -COS 6 cos _/

f13 = sin 6 cos (/.

(5.2)

The second reference frame is fixed in and rotates with the earth. This

frame is described by the right-handed orthonormal triad, i, in, and w and is illus-
trated in Figure 573_ T is directed from the geocenter to the point on the equator

at the Greenwich meridian. The Greenwich hour angle, measured from u, is_ll, and

=_ cos/_ I +_ sin/_ I. (5.3)

An expression for_ I , in terms of time of year, Greenwich Mean Time at injection
and instantaneous orbital time will be discussed in Section 5.1.5.5.

The third reference frame is the orbital frame, described by the right-

handed orthonormal triad rpq, and illustrated in Figure 5r4;_r is the unit vector

directed from the geocenter to the satellite position, q is the unit vector

directed along the vehicle's orbital angular velocity vector in the right-handed

screw sense. -_ is a unit vector in the orbital plane and is directed along the

velocity vector if the orbit is circular. _-, _, and _ may be expressed in terms

of u, v, and _ by means of a matrix [A],

= (5.4)
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Theelementsoftho trix[A]are
all = cos-Clcos_ - sin/_cos _ sin_

a12 = sin/_icos _( + cosS2 cos U sin

a13 = sin _ sin_

a21 = -sin/q cos_ cos_ - cos_flsin_

a22 = cosSlcos_ cos _- sin_ sin

a23 = sin _ cos

a31 = sin-fl sin

a32 = -cos/D_ sin _ (5.5)

a33 = cos _.

As illustrated in Figure 5r5 /q-is the right ascension of the ascending

node, _is the orbital inclination, and_ is the orbital angular position measured
from the ascending node. The transformation from the inertial frame to the orbital

frame corresponds to three rotations, each in a right-handed screw sense: (1)_Q_about

the _ axis, (2) _ about the line of nodes (positive from the geocenter to the as-

cending node), and (3) _ about the q axis. When-(-/, _ , and _ are all zero, _ is

along _, _ is along-9, and-_ is along _

The subroutines used for computing the orbital parameters and the orbital
are described in Section 5.1.5.position

The fourth reference frame is fixed in the main body of the vehicle (balloon).

This frame is described by the right-handed orthonormal triad x I Yl Zl" The desig-

nation of these main vehicle geometric axes has been described in Section 5.1.2

and illustrated in Figure 5rl.

The balloon coordinates Xl, Yl, Zl and the magnet coordinates x3, Y3, z3 are

related to the orbital coordinates by the Euler angle transformations [Eb] and [Em]
respectively:

I. -J

x

Yl

zI

(5.6)

Ix31Y3 =

z3

[Em]
(5.7)
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The elements of the

ell

el2

el3

e21

e22

e23

e31

e32

e33

El matrix are:

= cos Op cos Or

= sin Op cos Or

= -sin Or

= cos Op sin @r sin @y -sin Op cos Oy

= cos Op cos Oy +sin 0p sin Or sin Oy

= cos Or sin Oy

= sin Op sin Oy + cos Op sin O r cos Oy

= sin Op sin Or cos Oy -cos Op sin Oy

= cos Or cos Oy

(5.8)

Note, the subscripts b or m must be attached to the above matrix elements

and Euler angles to denote whether the parameters denote the relation of the balloon

or magnet to the orbit coordinates. Figure 8_r6 illustrates the _ transformation

from orbital coordinates to the balloon body axes. A similiar figure could be used

to illustrate the transformation from orbital coordinates to the magnet coordinates,

x3 ' Y3 ' z3

In Section 5.1.2 it is seen that x--3 represents the dipole axes of the magnet

while _3 and _3 are aligned along the roll and pitch axes of the balloon for zero

attitude angles.

The transformation matrix [Eb] corresponds to three right-handed rotations;

(I) @Db about the_ axis, (2) Orb about the intermediate Yl axis and (3) @ b about

the _'axisl . When O.plb,Orb, and @ b are all zero, _i lies along r-, yl lie_ along
andT I lies along q. When @pb, _rb and @yb are all small, they may be considered

pitch, roll and yaw attitude errors respectlvely. Similiar remarks hold for the

transformation [Em] .

Besides the magnet which is floating free with respect to the balloon,

another magnet must be simulated. This magnet is rigidly attached to the balloon

although its axes are not necessarily aligned with the balloon axis. For purposes

of identification, this magnet will be spoken of as the"balloon magnet" while the

independent magnet will not be specially identified. Two degrees of freedom will

be sufficient to relate the new magnet axes, x2, Y2, z2 to the balloon axes, Xl, YI'

zI •
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Therefore,

1I]
z2 zI

where _2 is the dipole axis and

Cll = cost cos
/

C13 = -sin_

c21 = -sinT

c22 = cost

c23 = 0

c31 = cost sin_

c32 = sinT sin_

c33 = cos_

-- while _ is a rotation about the_2 axis.T is a rotation about the zI axis
angles will be constant for a given configuration.

(5.9)

(5.10)

These

llt can be seen that the balloon magnet can be related to orbit coordinates byHI :

x2 r

= [H] (5.11)

z2

where [HI = It] [Eb (5.12)

The position of the sun with respect to the balloon axes is necessary for the

computation of the solar torques on the balloon. This can be represented as the

dot product of the body axes and the sun vector expressed in the earth-centered

inertial coordinate system,[_l v, w. The balloon axes may be related to the orbitalcoordinates by the matrix

Yl = B (5.13)

z 1
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where[BI [Ebl
Therefore, from equations (5.1) and (5.13)

Sxl = s . x I = fllbll + f12b12 + f13b13

Sy I = s - Yl = fll b21 + f12b22 + f13b23 (5.15)

Szl = s ° zI = fllb31 + f12b32 + f13b33

The magnetic field is computed by a subroutine programmed by Dr. R. T. Frost.

The inputs to this subroutine are altitude in kilometers, longitude and latitude.

The output represents the magnetic torque and the components along earth referenced

coordinates. These components are

BR, radial component, positive inward

B@, directed along the local meridian, positive in the direction of

the velocity vector

B_, directed along the local latitude arc, positive in a westerly direction
when the vehicle is moving south to north.

These magnetic components must be resolved along the orbital coordinates. Thus

[IElHr -BR

Hp = [D] B_ (5.16)

Hq B0

where Hr, Hp, Hq are the components along the r, p, q axes respectively. Since
H r = -BR, the [D] transformation is a rotation about H r . It can be shown that

the matrix elements of [D] are:

dll = I

d12 = 0

d13 = 0

d21 = 0

d22 = sin_ cos_ 3

d23 = -cos _ /cos LAT

d31 = 0

d32 = cos V/cos LAT

d33 = sin_ cos-f)_ 3

(5.17)
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To define the damper torques which the magnet exerts on the balloon and which

the balloon exerts on the magnet, it will be necessary to define the balloon body

rates in terms of the magnet body rates and vice versa. The rates around the

magnet axes can be resolved along the balloon body axes by the following trans-

formation:

Umxl

LTmyl

_/mzl

U/x31

= [E_ [Em'_ _/y3.

LJz31

(5.18)

The rates around the balloon body axes can be resolved along the magnet axes

by the following transformation:

(5.19)

5.1.4 Vechicle Attitude Dynamics

The attitude dynamics for the two body simulation are expressed in Euler's

dynamical equations. The interaction of the two bodies is expressed through the

magnetic damper torque.

The dynamic equations for the balloon contain terms for changing moments of

inertia. These are included so that the satellite may be studied during rod exten-

sion. Provisions have been made in the program so that a subroutine to define the

time varying moments of inertia can be included for each vehicle configuration.

The dynamic equations for the balloon are as follows:

rxl = Ixxl _/xl - Ixyl [Jyl -Ixzl [Jzl +Ixxl _xl -Ixyl _/yl

zl+ yl -wzl

Tyl = lyyl [Jyl -IxylL/xl -lyzl_/zl +lyyl Oyl "Ixyl Oxl

-lyzl C/zl+L/zl Gxl -LJxl gzl

rzl = Izzl _-/zl -Ixzl _/xl "lyzl [Jyl +Izzl _zl -IxzlLJxl

-lyzl _yl_/xl Gyl-_/yl Gxl

where

Gxl = Ixxl [Jxl

Gy I = -Ixyl[Jxl

Gzl = -Ixzl[Jxl

-Ixyl_Jyl

+lyyl _Jyl

_lyzl[_/y I

-Ixzl_/zl

-lyzl_/zl

+Izzl[Jzl

(5.20)

(5.21)
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The equations of motion for the magnet are the sameas those listed above for
the balloon except that the subscript must be changed from (i) to (3). Also the
momentsof inertia will not change with time.

Therefore,

Tx3 = Ixx3 _ x3
r

Ty3 = lyy3 _/ y3

Tz3 = Izz3 _ z3

where

Gx3 = Ixx3 [Jx3

"Ixy3_/y3
e

-Ixy 3 Lix3

-Ixz3 _Jx3

o# . [

-Ixz3 _z3 +L'_y3 Gz3 .....z3 Gy3

-Iyz3 _ z3 +_'_Jz3 Gx3-GJx3 Gz3

-Iyz3 _'y3 +_/x3 Gy3-_y3 Gx3

-Ixy3 _'y3 -Ixz 3 _7z3

Gy 3 = -Ixy3LJx3 +lyy3 L/y3 -lyz3 _/z3

Gz3 = -Ixz3_/x3 -lyz3 gJy3 +Izz3 LJz 3

The T's represent generalized torques.

acting on it:

Tg I gravity restoring torque

Td I

T
sl

Tm 1

Ttl disturbance torque on balloon

The magnet will have two torques acting on it:

Tm3 magnetic restoring torque

Td3 damper torque

Thus T I = Tg I + Tdl + Tsl + Tml + Ttl

T 3 = Tm3 + Td3

T I and T 3 may be broken into their components:

Txl' '£yl' Tzl' Tx3' Ty3' Tz3

(5.22)

(5.23)

The balloon will have five torques

damper torque

solar Lorque

torque on rigidly attached magnet, must be resolved along Xl, yl,Zl axes

(5.24)
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5.1.4.1 Gravity Restoring Torques on Balloon

The non-uniformity of the earth's gravitational field results in a field

gradient. In this analysis the earth is assumed to be perfectly spherical, so

the gravitational field varies inversely as the square of the geocentric distance.

Thus, when a satellite is in orbit, the force per unit mass is greater in the region

occupied by that portion of the satellite closer to the earth, and it is less in

the region occupied by that portion of the satellite farther from the earth. If

the satellite has three unequal moments of inertia about its principal axes, the

only position of stable equilibrium is that in which the axis of least moment of

inertia points along the local vertical, and in which the axis of greatest moment

of inertia is perpendicular to the orbital plane. In any other position the sat-

ellite will experience torques which tend to turn it into the position of stable

equilibrium.

Equations are given for the gravity gradient torques acting on the balloon,

about axes parallel to the geometric axes but which pass through the center of mass.

The moments of inertia of the balloon (including gravity rods) about center of mass

are Ixxl, lyyl, Izz I. The corresponding products of inertia are Ix_l, Ixzl, and
iyzl. During rod extension these moments of inertia will change wlth time. The
respective components of the gravity torque are:

_ 3K [e21beBlb(izzl_lyyl)+lyzl(eBlb 2 .emlbm)+ellbeBlblxyl_ellbemlblxzljTgxl R3

__ 2
= BE [ellbeBib(ixxl_izzl)+ixzl(ellb 2 .eBlb )+ellbe21blyzl.emlbeBlblxyl] (5.25)

Tgyl R3

Tgzl = 3K
R3

2
[ellbe21b(lyyl-lxxl)+Ixyl(e21b 2 -ellb )+e21be31blxzl-ellbe31blyzl]

K is the universal gravitational constant multiplied by the mass of the earth,

R is the geocentric distance calculated by the orbit subroutine.

The ell b are the direction cosines of the local vertical unit vector r with respect
to the balloon axes.

5.1.4.2 Damper Torque on Balloon

Damping will be obtained by the relative motion of two concentric spheres which

are separated by a viscous fluid. When there is a difference in angular velocity,

there will be a viscous shearing action exerted on the fluid which results in a

dissipation of energy. In order to produce a difference in angular velocity of

the spheres and to be assured that they do not eventually "lock up" on each other,

the inner sphere is fixed to the earth's field by the magnetic anchor. The torque

which is transmitted to the balloon thru the viscous coupling is a function of the

damping coefficient, b_ and the relative angular velocities of the two spheres.

The following equations define the damping torque on the balloon:
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TdxI = -b( [Jxl " [Jmxl)

TdyI = -b( hJyl " [Jmyl)

TdzI = -b( _Jzl "" (Jmzl)

[Jmxl _/mvl, [Jmzl, are the componentsof the magnet body rates resolved along
the bailoon_body axes. This resolution is defined by equation (5.18).

(5.26)

5.1.4.3 Solar Torques on Balloon

Solar torques arise from solar radiation pressure on the surfaces of a body.

This pressure is the result of bombardment of the surfaces by photons. The pressure

is exerted on both absorbing and reflecting surfaces. This program has the capa-

bility of computing solar torques on both a solid and mesh lens shaped balloon.

The equations for the mesh balloon are a first approximation and do not consider

the thickness of the wires which make up the mesh satellite. However, the solar

torque resulting on the bottom surface as a result of the sun's rays passing through

open spaces on the top part of the lens is considered. It is felt that the present

definition of the mesh balloon is a good approximation. The equations to define

the torques on the i, j, k axes of a lens shaped balloon are given in Section 7.1.

These equations consider the sun to be always in the i, k plane which will not

necessarily be so. Therefore, a transformation is necessary to convert the torque

components Ti, Tj and Tk into components about the body axes. The following
equations express this transformation:

Tsx I = T i

Szl + (5.27)
--Tsyl = Tj

T ksin@ sin@

--Tszl = "Syl T + Szl Tk
sin@ ; sin@

[

• ' 2 2 (5.28)
where sin @ =-_Sy 1 + Szl .

when @ = O, Tsy I = Tsz I = O.

The offsets YL, ZL must also be expressed in terms of offsets, YI0, Zl0 along

the body axes. This transformation is

ZL =-(Yl0Syl + Zl0 Szl)/sin@

YL =-(Yl0Szl - Zl0 Syl)/sin@

5.1.4.4 Effect of Earth's Shadow

(5.29)

If the vehicle is in the earth's shadow, all of the solar torques are zero. For

simplicity, all of the sun's rays are considered parallel, and the earth's shadow is

thus a cylinder. The shadow criterion is based on the relation between two unit

vectors, _ in the direction of the sun's rays and ? in the direction of the local
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vertical, positive upward. The componentof r in the direction of s is:

r s = _ • _ = allfll + a12f12 + a13f13 • (5.30)

If r s is zero or negative, the vehicle is in the half of the orbit toward the

sun and can not be in shadow. If r s is positive, the vehicle is in the half of

the orbit away from the sun, and its being in the earth's shadow depends upon its

perpendicular distance R c from the earth-sun line.

VI 2 (5.31)R= = R _ rs

If R c is equal to or less than the earth's radius, .20902956 x 108 feet, then

the vehicle is in the earth's shadow. If Rc is greater than the earth's radius,
the vehicle is not in the earth's shadow.

5.1.4.5 Ma_gnetic Torque on Balloon Magnet

The balloon magnet will exert a magnetic restoring torque on the balloon which

is dependent on the magnet orientation in the balloon and the satellite's position

with respect to the earth's magnetic field. The magnetic restoring torque can be

written:

Tm 2 = M2 (x2 X-_) (5.32)

where--x-2 and q_are vectors whose components are expressed in the r, p, q orbital

coordinate system]M 2 is the magnetic moment of the dipole expressed in appropriate
units. "x'2is the dipole axis of the magnet which is rigidly attached to the balloon.

This axis expressed in orbital coordinates is

0 I m

x2 = hllr + hl2P + hl3q (5.33)

where hl= are the direction cosines of the dipole axis with respect to the r, p, q
axes. HJis the earth's magnetic field intensity which is outputted from Dr. Frost'

subroutine to define the earth's magnetic field. Equation (5.16) defines the com-

ponents of the magnetic field in the orbital coordinate system.

(5.32) may be written:
m

Tm2 = M 2 r

hll

H r

or

w

m m

P q

h12 h13

Hp Hq

s

Therefore, equation

(5.34)

Tmr 2 = M 2 (hl2Hq hl3H p)

Tmp 2 = M 2 (hl3H r hllHq)
(5.35)

Tmq 2 = M 2 (hllHp - hl2Hr)
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and

TmylI

mzlJ

5.1.4.6

Tmr2

Tmp2

Tmq2

Miscellaneous Disturbance Torques on Balloon

(5.36)

For increased flexibility it is desired to have provision for periodic and

secular disturbance torques on the main body. The general expressions for the

body-axis components of these torques are:

Ttx I = T I + T 2 sin ( _i t + _i ) + T 3 sin (_2t+_2)

Tty I = T4 + T 5 sin ( _i t + @3) + T 6 sin (_2t+@4)

Ttz I = T 7 + T 8 sin ( _i t + @5 ) + T 9 sin (_2t+_6)

The T. are torque amplitudes. The angular frequencies_7 1 and

to th_ orbital rate or one of its harmonics or any other angular rates desired.

phase angles @i provide increased flexibility.

(5.37)

_2 may correspond
The

The indicator 0 or 1 is used in the input data. If the indicator is 0, all of

the miscellaneous torques are zero and the Ti,{_7 i and _i are not listed in the

input.

5.1.4.7 Magnetic Restoring Torque on Magne_

The independent magnet will also experience a restoring torque since the dipole

axis will tend to line up with its axis parallel to the magnetic field. This

torque can be written:

Tm3 = M3 (_3 X H) (5.38)

where M 3 is the magnetic moment of the dipole expressed in appropriate units, x--3

is the _ipole axis expressed in orbital coordinates; thus,

-x3 = ellm_ + el2mP + el3mq (5.39)

where e =_ are the direction cosines between the dipole axis and the orbital axes
1jL,_

r, p, q. H is the magnetic field intensity which is defined by equation (5.16).

Therefore,

Tm3 = M3 r p q

llm el2m el3m

Hr Hp Hq

(5.40)
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or

Tmr 3 = M 3 (el2mHq

Tmp 3 = M 3 (el3mH r

Tmq 3 = M 3 (ellmHp -

and_

l_Tmz3

5.1.4.8

el3 m Hp)

ell m Hq)

el2m Hr)

Tmr3

Tmp3 1

Tmq3J

Damper Torque on Magnet

(5.41)

(5.42)

The damper torque on the magnet will be similar to that on the balloon. Except

that in this case, the torque is transmitted from the balloon through the viscous

coupling to the magnet. The damping torque On the magnet will be a function of

the damping coefficient, b, and the difference in angular velocities between the

magnet body axes and the components of the balloon angular velocity which are ex-

perienced along the magnet body axes. This transformation is defined in equation

(5.19). Thus, the damper torque on the magnet may be written:

Tdx 3 = -b ([Jx3 - [Jbx3 )

Tdy 3 = -b ( [_Jy3 "_by3)

Tdz 3 = -b ( {_Jz3 - [_bz3 )

(5.43)

5.1.4.9 Euler Rates

The dynamic equations needed to complete this simulation are the Euler angle

rate as a function of body rates:

@pb = "_ + i ( _yl sin @yb + _zl cos @yb)
cos @rb

@rb = ('JYl c°S@yb -_Jzl sin @yb

@yb = _Jxl + (@pb + _ ) sin 8rb

9pm = ._ + i ( [_Jy3 sin @ym +[Jz3 cos @ym)
cos @rm

Orm = (_Jy3 cos @ym - [Jz3 sin @ym

_ym = L!x3 + (Opm + ) sin Orm

Each of these angular rates is numerically integrated by the IBM 7090 computer

to obtain the corresponding Euler angle.

(5.44)

(5.45)
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5.1.5 Digital Computer Program

The program for the IBM 7090 computer is a compilation of subroutines. Each of

these subroutines, as well as the input data, is described below.

5.1.5.1 Input Data

The input data are listed in Table 5.1. The units and a brief definition for

the parameters are included. A few brief remarks on some of the angles are in order.

The time of injection DL is positive if measured after a winter solstice and nega-

tive if measured before the solstice. Greenwich mean time is zero at midnight. The

orbital inclination _is always positive. The orbital angular position _ 2 is mea-

sured from perigee in the direction of travel. _ I, the orbital position at injection,
is measured from the ascending node.

Table 5.1 Input Table

Universal Constants

Symbol

f (EPS)

K (FKK)

E/C (EC)

Units

DEGREES

FEET 3 /SECOND 2

POUNDS/FOOT 2

Orbital Parameters

Description

Angle between ecliptic and equatorial planes

Gravitational constant multiplied by earth mass

Solar pressure constant

DL

APOG

PERI

GMT

(FNU)

_2 (ETA2)

i(ETAI)

Re

DAYS

FEET

FEET

HOURS

DEGREES

DEGREE S

DEGREES

DEGREE S

FEET

DAYS

Time from winter solstice to orbital injection

Geocentric distance at apogee

Geocentric distance at perigee

Greenwich mean time at injection

Inclination of orbital plane, with respect

to equatorial plane

Vehicle orbital position angle at injection

measured from perigee

Vehicle orbital position angle at injection

measured from _he ascending node

Right ascension

Radius of earth

Regression Period
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Table 5.1 Continued

Symbol Units

Initial Conditions

Opbo
Orbo

ybo

pmo
Ormo

Oymo

LJxl0

._Ty10

LJZl0

_Ljx30
y30
z30

DEGREES

11

I!

I,

DEGREES/SECONDS
,!

11

,I

Vehicle Char

To
KI

S

b

M2

M3

Ixxlo 1

lyylo
Izzlo

Ixylo

Ixzlo

lyzlo

Ixxlo

yylo
zzlo

xylo

xzlo

Iyzlo

Ixx3

yy3
zz3

Ixy3

Ixz3

Iyz3

cteristics

DEGREES

DEGREES

DEGREES

FEET

#FT. SEC.

.73593E-7 POLE CM.

.73593E-7 POLE CM.

SLUG-FT 2

SLUG-FT2/SEC

SLUG-FT 2

Description

Initial value of Opb
_rb

11

Oyb

" @pm
" @rm

" Oy m

Initial value of ,[Jxl

" iLJ1yi
11 _ 1

" _w___3

Angle to define position of rigid magnet

Angle to define position of rigid magnet

Complement of lens half angle

Radius of sphere of which the lens is a segment

Constant to define ratio of "open area" in

mesh skin

Specular reflection coefficient for lens

Diffuse reflection coefficient for lens

Damping Coefficient

Magnetic moment of balloon magnet dipole

Magnetic moment of independent magnet dipole

Initial moments of inertia of balloon

Initial rate of the balloon moments of inertia

Moments of inertia of independent magnet
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Table 5.1

Symbol

Continued

Units Description

XL

x' L

YlO

zlO

FEET

FEET

FEET

FEET

Offset of balloon c.g. from "circular"

center of top lens

Offset of balloon c.g. from "circular"

center of bottom lens

Offset of balloon c.g. along Yl from

geometric center of balloon

Offset of balloon c.g. along z I from
geometric center of balloon

Numerical Intesration Parameters and Other Indicators

Sets 6, 7, 8 in Table 5.2

Miscellaneou_

TI, T2, T3,

T4, T5, T6

T 7 , T 8 , T 9

_71' _2

{ume_ I,

Omega 2 )

_i, _2, _3

_4, _5' _6

(Phi I, etc.

Torque Constants

POUND-FEET

DEGREE S/SECOND

DEGREES

Coefficients of miscellaneous

disturbance torques

Angular frequencies of miscellaneous

disturbance torques

Phase angles of miscellaneous torques

Following is a description and input format (table 5.2) to this FORTRAN program

with variable field input. Each set begins on a new card with a field specification

in column I, each field is separated by commas. Each data card requires an asterisk

at or before column 72; this does not include the title card.

Table 5.2 Input Format
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SET

1

*2

3

4

5

FIELD SPECIFICATION

F & G tables (standard)

EPS, FKK, EC

DL, APOG, PERI, GMT, FNU, ETA2, ETAI, OMEGA, TAUR

THPB, THRB, THYB, THEM, THRM, THYM, _XI, _YI, _IZI,(_/X3,_Y3,_Z3

BETA, GAM, PHI, RHOS, RHOD, R, FKKI, RE ,

BB, FIXXI, FIYYI, FIZZI, FIXYI, FIXZI, FIYZI, FIXXID, FIYYID,

FIZZID, FIXYID, FIXZID, FIYZID, FIXX3, FIYY3, FIZZ3, FIXY3,

FIXZ3, FIYZ3, XL, XPL, YI0, ZI0, FM2, FM3



Table 5.2 Continued

SET

6

FIELD

X

X

NERR _ 0

8A F

NERR< 0

8B F

SPECIFICATION

GDSTPS, DT, TSTOP, DTPRNT

INTRVL, MI SC

NERR

ERMLNI, ERMXI, ERMN2, ERMX2, ERMN3, ERMX3, ERMN4, ERMX4, ERMN5,

ERMX5

EMAX(1), EMIN(1), EMAX(2), EMIN(2)...EMAX(12), EMIN(12)

MISC (SET 6) # 0
I

9 F [ TI, T2, T3, T4, T5, T6, T7, T8, T9, [,71, [J2,

I

i PH5, PH6

PHI, PH2, PH3, PH4,

If MISC = 0, no SLT 9 is required. Any number of complete groups of SET 2-9 may

be run at one time.

An Adams-Moulton method of numerical integration with Runge Kutta starter

is used. SET 6, 7 and 8 are integration controls. These controls provide for

application of error criteria to determine whether the integration interval is

satisfactory. The criteria are applied separately to each integrated variable,

as described below. If the integration interval is satisfactory with respect to

all variables, the program proceeds with the integration. After the number of con-

secutive satisfactory integration intervals reaches the number GDSTPS specified

in the input the program tentatively doubles the integration interval. If the

larger interval is satisfactory, the program proceeds with the integration. If

at any time the integration interval is found to be unsatisfactory with respect to

one or more variables, the program will halve the integration interval until it

is found to be satisfactory with respect to all variables. DT is the initial step
size in seconds. TSTOP is the number of seconds real time for the run. DTPRNT is

the real time print interval. INTRVL is 0 for constant DT and I for a variable

step size. MISC is 0 for no miscellaneous disturbance torques and I for non-zero

miscellaneous torques. NERR is the type of error criteria desired.

In set 8 the ERMN's refer to a minimum absolute error. If all the estimated

errors are less than the ERMN the step size is doubled. The ERMX's refer to the

maximum allowable error. If any single error is larger than the appropriate ERMX the

step size is halved.

In set 8A:

ERMN1 }ERNXl

refer to Opb, @rb, Oyb, Opm, @rm, Oym
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ERMN2 refer to _xl'_Yl
ERMX2

L;
ERMN3 refer to zl
ERMX3

ERMN4_ refer to (_/x3, _]y3

ERMX4J

ERMN5_ refer to I,/z3

ERME5 J

In Set 8B, the error criteria refer to the integration variables in the following

order: _pb, 8rb, 8yb, -:'pro,8rm, 8ym, k'Jxl,[_Jyl,CJzl,_Jx3,[Jy3,[Jz3 '

5.1.5_2 Subroutine for Changing Moments of Inertia

Provision has been made in the program for changing moments and products of

inertia for the balloon during rod extension, balloon ablation, or any other time

during which the moments of inertia are changing. The inputs to this program are

the initial moments and products of inertia as well as the initial rates of these

same parameters. Since the time history of these moments and products of inertia

will depend on the vehicle configuration, this subroutine is not in the program.

At present the program treats the initial moments and products of inertia as constants

for the entire duration of the run. Note, no provision has been made for time

varying moments and products of inertia for the magnet,

5.1.5_3 Initialization Subroutine for Orbital Parameters

This subroutine computes additional orbital parameters from those listed in

the input and from the constants K and _ . The semimajor axis a and the eccentricity

e are computed from the apogee and the perigee,

a = ½ (APOG + PERI) (feet), (5.46)

e = APOG - PERI (5.47)

APOG + PERI

The angular momentum per unit mass is:

ho = _Ka (l- e2 ) (feet2/second). (5.48)

The orbital period is

= 2 7/ a_K (seconds).

The orbital angle at perigee, measured from the ascending node, is:

_I0 =_i "_2 (radians).

(5.49)

(5.5o)
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The eccentric anomaly at injection, Eo, is found from:

cos Eo =
e + cos _ 2

I + e cos_2

The quadrant of E o can be 4etermined from Table 5.3, using the value of _ 2"

The mean anomaly at injection time is

M o = Eo -e sin E o (radians).

The time at injection is

MoT
to = -_/-_-- (seconds).

Table 5.3 Relation Between E o and72

-If2 Eo
(Radians) (Radians)

0 0

1 1

7/ cos e)
2

COS "l (-e) 77-

2

cos "I (-e) 377

2

3[[" cos-_e )
2

2/_ 27_

(5.51)

(5.52)

(5.53)

5.1.5.4 Earth's Orbital Position

This subroutine must be computed initially and thereafter when the Greenwich

Mean Time is zero. At this time, DL will be incremented by one day. The decision

to increment DL will come from the subroutine for the computation of latitude and
longitude.

The earth's orbit is considered to be circular, and therefore, its orbital

position_/is a linear function of time

= 2 7/DE - 2_DL (radians) (5.54)

365.24 -- TR

where T R is the regression period in days. If T R> I000 then _= 2_D L

UFSIL_ "
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Both _ and DL are measuredfrom the winter solstice, are positive after the
solstice and are negative before the solstice.

_i is the projection into the equatorial plane of the earth's orbital position

angle

sin

sin C i = ¢cos 2 6 cos2t, K+ sin2(r

(5.55)

cos I-- cosd cos £

VCOS 2 6 COS 28" + sin2

5.1.5.5 Subroutine for Computation of Latitude and Longitude

This subroutine which is necessary to provide input to the magnetic field sub-

routine, must be calculated for each time step. The latitude which is a function

of inclination and orbital angle can be written:

LAT = sin "I [ sin _ sin _ ] (5,56)

LAT can vary between + 90 ° and the sign will be determined by the sign of

the argument.

The angle which the Greenwich Meridian makes with the u axis is a function

of the time of year, Greenwich Mean Time at injection and orbital time.

Therefore,

/_I = _/i -7[/2 + 7//12 GMTT

where GM_T = GMT + t -to

3600

(5.57)

(5.58)

_i is the projection of the earth's orbital position into the equatorial plane,
GMT is the Greenwich Mean Time at injection and to is the time measured from perigee

at injection in seconds. When GMTT reaches 24 hours)D L should be incremented by

one day and GM_T set equal to zero. Thereafter, DL should be incremented every

twenty four hours and GMTT reduced to zero.

The longitude of the satellite at any point may be written:

LONG = _fl . _I I +-_13 (5.59)

where__ 3 is the projection of the orbit central angle measured from the equatorial
crossing onto the equator. It is calculated from the following equations:

sin/_ 3 = tan LAT

tan

cos/_i 3 = cos
cos LAT

(5.60)
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5.1.5.6 Orbital Subroutine

This subroutine is known as ELLIPo

subroutine listed in Table 5.4.

Table 5.4 _nputs to ELLIP

It receives the inputs from the initialization

SYMBOL

(OMEG)

a (SMA)

f (BCC)

_0 (ALTB)(TAU)

o (ETAO)

UN IT S

Radians

Feet

Feet2/Second

Seconds

Radians

DESCRIPTION

Right ascension of the ascending node.

Semimajor axis of orbit.

Eccentricity of orbit.

Orbital angular momentum per unit mass.

Orbital period.

Orbital angular position at perigee, measured

from ascending node.

If the eccentricity e is zero, the program computes the circular orbital

parameters only once.

R = 0, (5.61)

and

R = a (feet) (5.62)
6

_ = ho

R--T (radians/second). (5.63)

For each time interval of integration, the program computes the mean anomaly,

M = 27/'__.__t(radians),
T

the eccentric anomaly,

(5.64)

E = M (radians), (5.65)

the orbital angle measured from perigee,

-_o = E (radians), (5.66)

and the orbital angle measured from the ascending node,

= (7=_o) +_o (radians)' (5.67)

If the eccentricity is not zero, the variables pertaining to the elliptical

orbit are calculated at each integration interval. The mean anomaly is calculated

from equation (5.64) and then reduced by multiples of 2_, as required. The eccentric

anomaly E is calculated from Kepler's equation,

E - e sin E = M (radians). (5.68)

49



table of values of M for values of E at one-degree intervals. To solve equation

(5.68) the program enters the table with the value of M and interpolates to obtain

E. The quadrant of E may be found from Table 5.5, using the value of M. The

geocentric distance is:

R = a (I - e cos E) (feet)

The orbital angle (_ -_o ) measured from perigee is ualculate f_om:

cos = " e
i - e cos E

(5.69)

_,7o)

The quadrant of (_ "_o) is found from Table 5.5, using the value of E. The

orbital angular position is found from equation (5.67). The radial velocity is:

e hO sin (_-_o) = e hO sin E

R= _feet/second) (5.71)
a(l - e2) aVl - e2(l e cos

The orbital angular rate is found from equation (5.63).

Table 5.5 Relations Between M, R, E, and (_. -_o )

M

(Radians)

R

a

E

(Radians)

0 i - e 0

=

cos'le - eA_ - e2 I - e2

7/
2

cos-le

7/
2

7/" l+e 7/

3--_+e I __3/_
2 2

cos "I e - e_l - e2 i - e2 cos-le

2"_[ 1 - e 2?"/'

5. I. 5.7 Derivative Subroutine

2

COS "I (-e)

i

-I
COS (-e)

2_

This subroutine, which is titled DERIV, calculates the coordinate transformations

and the twelve time derivatives. These derivatives include the angular accelerations

about the body geometric axes and the Euler angular rates.

5O



5.1.5.8 External Torque Subroutine

A subroutine is used for each kind torque acting on each of the bodies. For

example, there are five torque subroutines for the balloon: gravity gradient torques,

damper torques, solar radiation pressure torques, magnetic torques and miscellaneous

disturbance torques. Only two of these are applicable f_r the magnet_ magnetic

and damper torques. The total torque components (torques resolved along body geo-

metric axes) are the algebraic sums of the various individual torque components

for the balloon:

Txl = Tgxl + Tdx I + Tsx I + Tmxl + Ttx I

Ty I = Tgy I + Tdy I + Tsy I + TroyI + Try I

Tzl = Tgzl + Tdz I + Tsz I + Tmz I + Ttz I

(5.72)

For the magnet:

Tx3 = Tmx 3 + Tdx 3

Ty 3 = Tmy 3 + Tdy 3

Tz3 = Tmz 3 + Tdz 3

(5.73)

Other torque subroutines can be easily added to the program,

5.1.5.9 Output Subroutine and Plotting Option

Most of the required output is available from the computations performed by

the various subroutines. Additional required output data are described next.

The elapsed time tou t since injection is printed-out to the nearest tenth of
an hour.

t to (5.74)
tout = 3,600

The angle A between the satellite yaw axis and the local vertical to earth may be

calculated:

= cos "I (cos _pb cos _rb) (5.75)

The angle 8 between the sun's rays and the longitudinal axis of the balloon lies

between zero and 180 degrees and is computed from

= cos "I (Sxl) (5.76)

The angle o< between the Yl axis of the balloon and the normal (j axis) to the plane
containing the sun is

cosiness]sin1[sylI s77LVSz12+sy12 Vs,12+ Syl2
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Two pages are available. On page I, t _, Onh, _rb, _pm, _rm,
(_xl,-_mxl),( _Jyl" {_myl),( _Jzl -_mzl_and_ _.

Page_bfs stored on_'and

printed on request. It contains: tout, B, Hr, _, Hq, 0,_ , Tsxl, Tsyl, Tszl,
LAT and LONG. A binary tape A5 is written for plotting which contains all the
information on pages I and 2 with the exception of latitude and longitude.

Whenthe elapsed time (t - to) in seconds exceeds the value TSTOPspecified
in the input, the computation stops. The machine operator may also be instructed
to stop the run after a certain amount of computer running time.

The print-out interval DTPRNTis also specified in the input. The print-out
will seldom occur at exact multiples of the specified interval but will occur at
the end of the next integration interval. This slight defect occurs because the
specified print-out interval is usually not a multiple of the integration intervals
on account of the variable integration intervals.
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5.2 RESULTSOFPRELIMINARYSTUDIES

The optimum parameters selected for poles (Section 4.) result in a time

constant of forty orbits, and a steady state magnetically induced error of one-

half degree. To determine the validity of the planar analysis, the optimum parameters

were put into the three axis computer program and the performance checked. Figure

5-7 is the graph of the computer results with the optimum parameters. The initial

error in pitch is ten degrees and with a time constant of forty orbits, the error

after 112 hours should be 3.7 degrees. The actual error is approximately 4.1

degrees indicating a time constant of 45 orbits. The discrepancy between the pre-

dicted value and the actual value is primarily due to the damper induced distur-

bance at the small angles. This is evident in Figure 5-7 by the presence of small

fluctuations on the decay curve. The nature of the fluctuations is illustrated in

Figure 5-8. This is a steady state run, with all the fluctuations the result of

damper induced disturbances. The estimated steady state error was one-half degree

and the system remains within that angle for the majority of its life. The occasional

six tenths of a degree is caused by the beating of satellite natural frequency and

the magnetic disturbance. This effect decays and is disappearing by the end of the

run. A twenty four hour cycle is noticeable on roll and yaw due to the rotation

of the earth. The magnetic influence on roll is, however, small.

The optimization analysis was_alinearized analysis, and decay from large

initial angles had to be checked using the three axis computer program. Figure

5-9 is such a run with initial angles of 45 degrees. The decay time for pitch is

32.5 orbits, as is the decay time for roll. This value is considerably less than

the predicted and is due primarily to the non-linear behavior of the satellite at

large angles. Note that yaw, with an initial angle of zero, makes eight complete

revolutions before the end of the run.

To determine the effect of solar pressure upon the satellite, an orbit was

selected with the sun in the orbit plane and the vehicle was given on initial

error. This computer run is shown on Figure 5-10 and comparison with Figure 5-7

indicates little difference.

Figures 5-11 and 5-12 show the steady state response to solar torques with

the sun normal to the orbit plane and 45 degrees to the orbit plane, respectively.

When the sun is normal to the plane, there are no solar torques on pitch, and

since the vehicle is symmetrical with no center of mass offset, the solar torques

on roll are small. The oscillations in roll are primarily the result of damper

induced disturbances. With the sun at 45 degrees (Figure 5-12), the satellite is

in the earthi's shadow for a short period of time, which causes a periodic disturbance

on the satellite. The greatest effect is in roll, where the steady state error

increased from .25 degrees (Figure 5-11) to .6 degrees. The amplitude of oscillation

Of pitch _4 not increase_ but the characteristics of the oscillations have changed.
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Figures 5-13 and 5-14 illustrate the steady state behavior of the vehicle for
for a 30 degree and 48 degree inclined orbit, respectively. (Please note the
change in pitch and roll scales in Figure 5-14). The sun would be 45 degrees to
the orbit plane if the orbit were polar. For both inclinations the oscillation
amplitude in roll has increased beyond those for the polar orbit at the samesun
angle. The oscillations in pitch have, however, decreased.

The effect of orbit eccentricity also had to be checked and Figure 5-15 shows the
vehicle steady state performance in an eccentric orbit. The sun is normal to the
orbit plane° After one time constant the satellite oscillates at orbital frequency
(as anticipated) with an oscillation amplitude of 2.1 degrees. The error due to
eccentricity alone (Figure 4-4) is 1.5 degrees. The damper induced error is .5
degrees. The effect of solar torque is therefore, small, as indicated previously.

Figure 5-16 illustrates the effect of solar torque and eccentricity upon trans_
ient decay time. Whencomparedwith Figure 5-9 there is little difference. After
240 hours the vehicle is oscillating at orbital frequency with a five degree
amplitude° The motion is still decaying.

The results of these preliminary three axis runs indicate that the performance
of the system is as anticipated. Thecomputer program that is required for large
angle three axis motion studies is operational, providing the capability for more
detail include: orientation during rod extension and balloon deployment; error
decay from large error with disturbance torques imposed; and steady state oscill-
ations produced by the combined effects of thermal bending of the rods, orbit
eccentricity, earth's magnetic field and solar pressure.
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6.0 DAMPER DESIGN ANALYSIS

6.1 MAGNETIC MATERIAL SELECTION

An analysis of permanent magnet materials obtained from several manufacturers

indicated that Cast Alnico 5DG with its high B at peak energy would give the highest

magnetic moment per unit mass of material° This material has been tentatively

selected for the horseshoe magnets and the bar magnets.

To minimize the amount of bismuth in the outer shell and lower the weight

of the supporting structure needed to withstand launch, it is desirable to have

the inner sphere neutrally bouyanto This can be achieved by using a cylindrical

magnet of approximately 4:1 ratio of length to diameter. This configuration pro-

vides a good magnetic moment, and permits the inner sphere to be of sufficient

diameter to achieve neutrally bouyancy, even after addition of the extra retaining

magnets and shell structure°

6.2 WEIGHT ESTIMATES

The weight of the inner sphere for neutral bouyancy is

and

Wt s - _ i_ df (6.1)
6

where df - density of fluid

im = length of magnet

The equation for magnetic moment is

M = BA
4_ klm (6.2)

where B - flux density

k - ratio of pole length to actual length

Am. = Area of magnet

For the _gnet ie_gth equal to 4 Limes the magnet diameter°

Am=_

64

M = bkl_

256

(6°3)

(6.4)
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Solving for 1 and substituting into Equation 6.1

Wt =_df 256 M

6 Bk

= 134 df
--M
Bk

(6.5)

(6.6)

for df -- o97 dynes/cm 2

B = ii,000 dynes/cm 2

k= 0.7

Wt = .0169 M gr.

= 37.2 M x 10 -6 ibs. (6.7)

An assumption of 1/30 the radius of the sphere for thickness of Bismuth and

the same for a supporting structure gives an external shell weight of

im 2 im +_(i m + 31m )2 im (6.8)
Wt° = _(im+ _) _ dbi 60 6-_ daL

dbi = Density of Bismuth = 9.75 gr/cc

daL = Density of Aluminum = 2.7 gr/cc

W tO = .684 i_ gr

where

(6_9)
Hence

From Equation (6.4)

And

3 = 256 M

m b-_- = °0227 M (6._0)

Wt O = °0235 M gr (6.11)

= 50 M x 10 -6 ibs. (6o12)

The total weight of the damper component can then be estimated to better than

i0 percent accuracy by combining equations (6.6) and (6.10)

Total Weight = 87.2 M x 10 -6 ibs.
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The above calculations are conservative. A decrease in length to diameter

ratio of the magnet in the inner sphere, would decrease the weight by nearly the

square in the change of that ratio. Tests of actual magnets in a shell of bis-

muth would indicate the minimumthickness required. The band of weight vs. magnet

strength shownin Figure 4-5 takes into account the uncertainty in required bis-

_ath.
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7.0 SUN PRESSURE TORQUES

Solar torques arise from solar radiation pressure on the surfaces of a

body. This pressure is the result of bombardment of the surfaces by photons.

The pressure is exerted on both absorbing and reflecting surfaces.

If an elementary surface area dA is exposed to sunlight, the force exerted

by the photons striking the surface is

The ratio of the solar power flux density to the velocity of light (Po=E/c)

is the pressure exerted on a perfectly absorbing surface normal to the incident
radiation. At earth's distance from the sun this is 4.62 x 10 -5 dynes per square

centimeter or 9.65 x 10 -8 pounds per square foot. The first term in the brackets

is the contribution due to absorption, and the second term is that due to re-

flection. -_is a unit vector in the direction of propagation of the radiation.

is a unit vector perpendicular to the surface and positive inward. (The ra-

diation impinge: _ on the "outer" side of the surface.) The quantity (7 • _) is

the cosine of t _ angle of incidence. It is seen that the absorption contribu-

tion is along the incident ray and that the reflection contribution is along

the normal into the surface. Both terms have a cosine factor (_ o _) because

the projected area normal to the radiation is this cosine factor times the area

dA. The reflection term has a factor 2 and a second cosine factor. These arise

from taking the resultant of the forces due to the incident and reflected rays.

In practical problems, all of the sun's rays at the satellite are assumed to be

parallel, although the sun actually subtends about a half of a degree at I aou.

in analyzing the attitude dynamics of a satellite or any other body, the

torques about some particular center of rotation are of primary interest. The

center of rotation generally has an arbitrary location with respect to any sur-

face under consideration. Therefore, the calculation of the solar torques on

the body, due to solar radiation on one of the body surfaces requires expres-

sion of the vector moment arm from the arbitrary location of the center of r_-

tation to each element dA of the surface. If this moment arm is designated h,

then the__sola__torque due to a surface is the integral of the vector cross-
product h X d_F over the portion of the surface illuminated by the solar radia-

tion.

7.1 TWO DIMENSIONAL SKIN

Equations are derived for a two dimensional skin which neglect wire thick-

ness; these equations are a first approximation to the much more complicated

three dimensional equations. Figure 7rl shows the coordinate system which was

used to describe the POLES satellite for this analysis. The righthanded system

of coordinates i, j, k is defined such that the sun is instantaneously in the

i,k _lane° The angle which the sun makes with the_ axis is @ where 0_ _ 180.

The i axis is along the longitudinal axis of the balloon @nd directed as shown

in the figure. The lens was assumed to be composed of portions of two spheres

whose centers are 0 and 0 w and whose radius is ro. @ is %he measured from the

horizontal to the edge of the lens; thus, the lens central angle is 2(90-@)°

is the integration variable along a "latitude" line of the sphere and _
along a "longitude" line. _ is a vector normal to the surface which is directed

toward the center.
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It can be seen that the sun vector is

s = cos @ i - sin @ k (7.2)

and the normal to the surface of the sphere is

_ = sin _ T- sin_ cos _ _ - cos _ cos_ (7.3)

The elementary surface area is

dA = roE cos _ d _ d _ (7.4)

When no shadows exist, the iluminated surface is defined by -7/_V/_7/
and 0_ _5_ - However, when the sun makes a certain angle (@ _ _) with

the T axes, shadow will occur along two straight lines which are perpendicular

to the sun vector. Along these lines,

• _ = 0 (7.5)

Therefore,

COS @ sin _ + sin @ cos _ cos_ =0 (7.6)

If _, is defined as the angle at which the shadow occurs then, the sun-

shadow line will be defined by

cos _c = - tan _ (7.7)

tan @

A system of offsets must be defined such that the torques can be computed

about any arbitrary point. Since the torques are computed about two spherical
!

centers, two sets of offsets, XL_ , YL _ ZL and x t , YL' z_ _ are necessary.
If Xo is the distance along the i axis from the geometrical center to the

arbitrary center of torque (positive toward 0 in Figure 7._ then

XL = - ro sin 0 + xo (7.8)

80

x_ = ro sin 0 + xo (7.9)

YL and y_ are offsets along the j axis and will be equal since the two

spherical centers are along the i axis. Similiar reasoning follows for zL and
|

z_, the offsets along the-_ axis. Therefore, only the offsets XL, xL , YL and
zL will be considered. The moment arm from the point around which _he torques

are computed to dA for the spherical segment, 0, is
...%

h = i(-r O sin _ -Xl) + j(r ° cos _ sin_- YL)+k (roCOS _ cos _-z L)

For the spherical segment, 0', the corresponding moment arm is

h' = i(-r o sin_ x L')+j(rocos_ sin_" - yL ) +k(roCOS /Icos_r- ZL)

The element of torque about the arbitrary point, due to solar flux on dA, is

d2T = h X d2F

and d2T ' = h' X d2F

for the two spherical segments.

(7.10)

(7.11)

(7.12)

(7.13)



Thus far, in the discussion no mention has been made of the material which the

balloon is made of. If the material is solid, then the previous discussion is

sufficient and the equations may be integrated as they stand. However, if the ma-

terial is a mesh type substance, further definition is necessary.

As a first approximation, the mesh is considered to be square and of negligible

thickness. The percentage of the closed area is estimated. This percentage, KI,

is assumed to be the percentage of the torque on the surface of the balloon toward

the sun which is experienced by the balloon. Since the surface is partly open

(I - KI) of the sun's rays will fall on the inside of the balloon. Of these rays,

K! of them will cause torque on the balloon. Therefore, a factor of KI(I - K!) is
applied to torques on the inside of the balloon.

The derivation of K I may be seen from the following illustration.

where a v is the width of the wlre and
wire to the center of the next wire.

TI(2 av - TI)' The area of the total square is av

Then KI = Tl(2av - _i)

a v 2

but 2 a >>_i' and
v

s the distance from the center of one

The area of the solid material is
2

(7.14)

KI = 2 --i (7.15)

a V

For example, if TI = .001 and av =.i, then KI = .02 or 2% of the balloon is solid

material.

The derivation of the force equation assumes that s ._:_is positive which is to

say that the sun looks into the surface as does the normal. For a porous inner'surface,

the normal must then be directed away from the center of the sphere or the force

equation must be redefined such that the terms containing odd powers of n are

switched in sign. Therefore, the new force equation becomes

3

where the subscript o will be used to distinguish this special case.
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The following table shows the integration limits, meshcoefficient and force
equation to be used for the four ranges of sun angle 0. Case I and IV represent
no shadowcondition while the balloon is partly in shadowfor cases II and III.

III

Table 7.1 Integration Limits for//_T
_j

Case

I

II

IV

Term

1

2

Oto +7f
m

.+g

Center

I

to _/2 o
-_/2 to -_ O'

Mesh Force

Coefficient Equation

KI d2F

KI(I-K I) d2F o

i

2

3

4

I

2

3

4

to "_'/2

_2 toF-_

_f-_ to

+_

+

e to _/2 o
to e 0

-e to-_ O'

-_/2to-e O'

-F/2 to-(g-e 0'
-(_-e)to-_ o'
_to_-e o
?f'-etoTl'12 0

-?r/2 to-_ O'
_/ to _/2 o

K I

K 1

K I

KI(I'K I)

KI

K I

K I

Kl(l-K I)

KI

KI(I-K l)

d2F

d2F

d2F

d2F o

d2F

d22F
d F

d2F o

d2F

d2F o

It is only necessary to consider 0 $ 0 _since the integration in the plane

perpendicular to @ includes +7_if no shadow exists or + _ if a shadow exists

where _c defines the sun-shadow line.

Following is a summary of the torque equations which have been obtained by

combining and integrating the equations defined in this section.

Intermediate functions:

F I = sin @ cos O cos 2 _ (i - sin 2 _Ps) (7.17)

F 2 = 2/9 Pd sin @(2 3 sin _ + sin 3 _) (7.18)

F3 = cos 2 @ cos 2 _ + ips cos 2 _(2 cos 2 @ -3 cos2@ cos2_ + cos2_) (7.19)

F 4 = 4/9 Pd cos 0 (I - sin 3 4) (7.20)

F5 -- sin@[_ 2 .sin- I (sin_____)_sin _ sin _Vsin2@ sin2_-cos@cos2_(l-sin2_s)Cos-l(cotOtan_)

i sin2_ ) Vsin2 @ - sin2_ ] (7.21)
-PsSin _ (2/3 - sin 2 _ + 3 sin2@

(cos @ . l(cotOtan_) sin2_cos@_in2@_sin2_ ]
F6= 2pdsin@ [-2cos -I c--_-_s_)t(3-sin2_)sin_ cos-

" sin_O (7.22)
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F7--?fsinOcosOcos2_(1-sin2_Os) - --_PdT/SinOsin¢(3-sin20)+ 4pd] [ sine (7.23)

2Pd sinO(B-sin20)] (7.24)F8= -(l-Kl)_sinO [cos30(l-sin2@ps )- 4_d +

F9= c°sO [_2 -sin-l(sin-sinO-_)-sin_sin20-sin20-c°s@c°s20c°s -l(cOtotan0)] (7.25)

_ i 2
+Ps[ 3c°sOsin_c°s20Ysin20-sin20 _cos _ (cos2_-3cos2Ocos2_ +2cos2@)cos-l(cotOtan0) I

2 (7.26)

F.IO = 7fcos2¢cos2@ + 1 _s cos2¢(cos20-3C°S2OCOS20+2cos20)+4 PdT_ c°sO(1-sin3_)
(7.27)

3 _ 4 Pd(l_sinBO) ] (7.28)FII-- -_(l-Kl)c°s8 [c°s3@(l + _Ps sin20)

4
FI2= "(l-Kl)-f_sinO [c°sBo(l-sinm@ps) + 9Pd - 29Pd sinO(3-sin20) ] (7.29)

• _ 4 P d (i sin3@)] (7.30)FI3 = '_i"K-L,_j_-COS@ [COS3@(1 + 3PS sin2@)+ _

C,_:. I: (" Ee _ 0

T i = KI(2 --Ki) Poro2yL _" (FI + F 2)

Tk = KI(2 - K i) Poro2yL 7f(F 3 + F 4)

Ty = -Kl2Poro3_(l -&)sin _ cos20 sin O cos 0

-K I P@ r@ 2_xL + Xe'-KlXe' )(FI+ Fm)+(2-K I)(F 3 + F4)ZL]

Case II: #<@ -< 90 °

(7.31)

(7.32)

(7.33)

T i = KiPoro2yL (2 F 5 + F 7 - FI2 )

Tk = KiPoro2yL (2 F 9 + FI0 - FI3 )

Tj = -KiP@r@3 7/(1 -Ps)Sin@cosO

-KIP@r@ 2 [ (XL ÷ XL' ) F5 + (xL - XL' ) F 6 + XLF 7

+ 2zL F 9 + zL FI0 ZLFI3 ]

Case III 90° < O _Tr- 0

[ sin¢cos20 -sinOcos20(l-Kl)]

xL ' FI2

(7.34)

(7.35)

(7.36)

T i = KiPoro2yL (2 F5 + F 7 + FS)

Tk = KiPoro2yL (2 F 9 + FI0 + FII )

Tj = -KiPoro3_ (i-ps ) sin @ cos @ [ sin 0 cos20 -sin Ocos20(l-Kl) ]

-KIP@r@ 2 [ (XL + XL' ) F 5 + (xe - XL')F 6 + XLF 7 + XLF 8

+ 2zL F 9 + zL FI0 + zL FIll

(7.37)

(7.38)

(7.39)
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% _

Case IV: 77- 0 -_@ <--7"]-

Ti = El(2 _ KI) Poro2yL_(-Fl + F2) (7.40)

Tk _- KI(2 _ KI ) eoro2yL _(-F 3 + F4) (7.41)

Tj = -El2 Poro3_(l -ps ) sin 0cos20sinQcosO

The preceding equations were programmed sepax/ately so that solar torques could

be easily evaluated as a function of sun angle for set vehicle configurations.
Figures 7-2, 7,3, 7_-4/. . show solar torque Versus sun angle for Ps = "65'Pd = .05
and mesh coefficients of 100%, 5% and 27.. Both symmetric and unsymmetric satellites

are included.

7.2 THREE DIMENSIONAL SKIN

The preceding analysis considered solar torques on mesh wires whose surfaces

are parallel to the spherical surfaces. These wires were considered to be of neg-

lible thickness. Appendix III contains the derivation of the solar torques on the

radial areas of a mesh satellite composed of square cross-sectional wires. There-

fore the total solar torque on a mesh satellite with square cross-sectional wires

is the sum of the solar torques on the parallel and radial surfaces. At present,

the equations contained in Appendix III have not been programmed. {
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8.0. EDDY CURRENT TORQUE S

This analysis pertains to an investigation of the torques due to eddy currents

of a lenticular balloon satellite in orbit. The balloon is composed of a large

lens-shaped wire mesh. This conducting material is in motion in the magnetic field

of the earth; therefore, eddy currents will be induced into the material. The eddy

current loops produce a magnet moment which interacts with the earth's magnetic

field, producing a torque on the satellite. We shall try to give a good estimate

of the magnitude and frequency of this torque for the worst possible case. Two

cases will be considered as an approximation: (a) a circular wire loop and (b) a

thin conducting disc.

Faraday's Law states that the induced emf around a closed path is equal to

the negative rate of change of flux through the loop. (reference 2, 3 and 4)

: _ _ (8.1)
dt

=f_ " d_

Warea enclosed by loop

(8.2)

where: = emf produced in loop (volts)

_= magnetic flux through the loop (webers)

B = flux density (webers/M 2)

Equation (8.1) considers only the emf due to a flux change and does not take into
account the motion of a conductor such as a straight wire moving in a constant mag-

netic field. This motional emf is correctly given by

= - B ° _o X dl o (8.3)

where: v3 = velocity of the element of wire

dl o = element of wire

We shall show immediately that the emf produced by equation (8.3) is zero for

the case of a rigid wire loop moving in a uniform magnetic field. (Uniform field

means that the instantaneous value of the field is the same at all parts of the

circuit.) The motion considered is that of translation only.

The dot and the cross in equation (8.3) may be interchanged to give

= - B X V_o • dlo

and since B and vo are constant vectors during the integration, they may be taken

outside of the integral, giving

I"

C = - B X v o •y dl o
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But dl o = 0 for a closed loop, hence

= 0 for translational motion.

From now on we" concern ourselves only with the emf produced by equations (8.1) and

(8.2).

The magnetic field of the earth may be approximated by a dipole. The descrip-

tion of a dipole field is

where:

H = _ 2 cos r + sin
(8.4)

H is the magnetic field intensity (amp/m), _ and _ are unit vectors and

the coordinates r (geocentric radius) and _ (polar angle) are shown in
Figure 8-i.

Figure 8-1_

m

r

Description of Dipole Field

M e is the strength of the earth's magnetic dipole and is equal to, cf

(reference 5),

Me = 6.43 x 1021 amp - meter 2 (8.5)

The satellite is oriented so as to always point down along the local vertical.

A circular loop of wire, or a disc, is in a circular orbit as in F_ure 8-2°,

and we wish to find the torque due to eddy currents on the wire and disc respectively.
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y Current s

Dipole

Figure 8-_ '''_

Loop in Orbit Around Magnetic Dipole

A polar orbit is chosen because this would produce the maximum flux change through

the loop.

8.1. EDDY CURRENT TORQUE ON A WIRE LOOP

The flux density at the position of the loop is

_= _° Me [ 2 cos_ r + sin_]
r3

(8.6)

where: _o = 47_x 10 -7 Henry/meter

B is assumed to have the same value at all points along the loop.

The flux through the loop is

= • dS=AB" r

(TIp = 2 7Tao 2 /-_o Me cosb _ (8.7)
r 3

where: ao and A are the radius and area of the loop respectively.
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The emf induced in the loop due to the flux change through the loop becomes

L = 27_ao_o Me _]o sin _]o t (8.8)
r3

where: E has been replaced by _]o t and _o is the orbital angular velocity.

The above emf produces a current in the loop of magnitude

_-_ (8.9)
io = 27Ta° 0_o

where: Go = resistance per unit length of wire (ohm/meter)

The current in turn produces a magnetic moment of M of

_=ioA_

which interacts with the magnetic field to produce a torque T

_A -% _I
T=MXB

--% .-%

T= ioA_XB

_a°3 _° Me % sin

T = _ r3
LJo t (fx$)

(8.io)

(8.n)

For the circular orbit considered here, the geocentric radius is related to

the angular velocity by

_o 2 =___K (8.i2)
r 3

where: K = (3.98 x 1014 m3/sec 2) is the product of the gravitational constant and

the mass of the earth.

With the above substitution into equation (8.11) the eddy current torque

T=_

becomes

3
ao CJo 5 -_

(8.i3)

normal to orbit plane (along pitch axis).
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The eddy current torque is seen to depend upon the third power of the radius

of the loop, the fifth power of the orbital angular velocity and inversely upon the

resistance per unit length of wire.

The eddy current torque, equation (8.13), has a frequency of 2_o; but it is

always in the same direction normal to the orbital plane in the sense of the orbi-

tal rotation (pitch direction). This is due to the fact that when the radial

component of the field is increasing, the tangential component is negative, while

when the radial component is decreasing, the tangential component is positive.

The interaction of the eddy current with the field produces a torque that is

always in the same direction.

8.2, EDDY CURRENT TORQUE ON A THIN CONDUCTING DIS.___CC

Next we consider the torque on a thin conducting disc. The analysis is

similar to the wire loop except now the medium is continuous. The disc is thin

to allow the magnetic field to penetrate without significant loss in field

intensity. Also, the eddy currents are assumed to be circles concentric with

the center of the disc as in Figure 8-2.'.

/ i i ,'I-...... "- _ "
i # <'"' "<.-. "_"\ '

• \.. " --_ ........ .... dl o

b -1° 5

Figure 8-'3

Eddy Currents in Thin Conducting Dis___cc

Circular currents are a plausible assumption because if one starts at the edge

of the disc the continuity of current imposes the condition that the current must be

tangent to the edge. From syn_netry the current must be the same magnitude all the

way around the edge. In this manner one can work from the edge to the center where

the current must become zero.
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The flux through the area enclosed by a circle at a distance Io from the

center of the disc is the same as equation (7) with ao replaced by Io. The emf

is similar to equation (8).

t = 2 _Io 2 /_o Id._e_Jo sin [Jot (8.14)
r3

The current flowing through the small cross section of thickness and width

dl o at a distance io from the center is

To dlo
dio =

2 1opo
where: P o is the resistivity of the material (ohm-meter).

The magnetic moment of this current is

(8.15)

___ 2

dM = _i o dl o r (8.16)

and the total magnetic moment due to all eddy current loops is found by integrating

equation (8.16)

a o

-_ _ro _o Me _o sinr, , t I
M = po r3

dl o

O

Upon performing the integration and making the circular orbit substitution,

equation (8.12), the magnetic moment becomes

_= 7_ao4 To [ _oMe] 3 [Cjo ] -_
4po K _o sin t r (8.17)

-_ -A -I

The torque (T = M X B) on the conducting disc is found to be

_o ao4_o 5

PO

-.t

(8.18)
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Equation (8.18) is similar to equation (8.13) except now the torque depends

upon the fourth power of the radius instead of the third power as in the case for

a circular wire loop. It also depends linearly on the thickness of the disc as

would be expected.

If the lenticular satellite is composed of a wire mesh, it is possible to

show that the total torque is due only to the contribution of the outside ring.

A flat wire mesh as shown in Figure 8-4 " is composed of many small conducting

loops, each of which has an emf induced by the magnetic field.

\ ©
Resulting Current, io

Figure 8r_ _

Eddy Current Loops in a Wire Mesh

The current in any one loop is completely cancelled by the currents in

adjacent loops surrounding the given loop unless, of course, the loop happens to

be next to the edge. In that case current will flow around the outside edge only.

Thus, the torque on a wire mesh is the same as the torque on a wire loop that coin-

cides with the perifery of the mesh.

8.3. RELATIVE MAGNITUDES OF EDDY CURRENT TORQUES

The lenticular balloon will be approximated by (i) a thin wire mesh and (2) a

thin conducting copper disc. The torque on the wire mesh is given by equation (8.13)

and the torque on the conducting disc is given by equation (8.18). The constant

_o Me/K appearing in both equations has a magnitude of

_o Me _ 20.3 volt sec 3 (8.19)

K M 2
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The emf induced into a loop is given by equation (8.8) with r3 replaced by

 LJo2

(8.20)

The amplitude of equation (8.20) is shown in Figure _-_.i. The emf is

plotted versus orbital rate for different values of loop radius.

8.3.1. To___ue on Wire Loop

The lenticular balloon will be made of a mesh material with wires that

are 1 mll to 3.5 mils square cross section. To establish an upper limit, the larger

value of 3.5 mils is assumed. This cross sectional area corresponds to that of 38

gauge wire for which the resistance per unit length, Go, is approximately 0.7 ohms

per foot. Equation (8.13) may be written as

where:

T = Tav e (I - cos 2_J o t) (8.21)

2

Tave = _' 0"o (8.22)

A plot of equation (8.22) is shown in Figure ( _-6: for various values

of Tare, ao and_Jo for the 38 gauge wire described above. As can be seen from the

graph, the torque on a single wire loop is completely negligible. The gravity gra-

dient restoring torque per degree of deviation from the vertical is about 10-2 foot

pounds.

8.3.2. Torque on a Thin Conducting Dis.____c

Let the conducting material be copper of thickness I mil (.001 in),

then [o = .001 inches and Go = 1.72 x 10 -6 ohm-cm.

written as

The torque on the disc is given by equation (8.18) which can be

where:

T = Tav e

Tave = _ K

(i - cos 2 _Jo t) (8.23)

2

To ao4 L-)o5

po (8.24)
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A plot of equation (8.24) is shown in Figure (8_7) for various values

of Tave, ao and _o for the copper disc described above. This torque represents

the maximum value that could be developed by any large surface of material in orbit

around the earth.

8.4. EDDY CURRENT TORQUES ON GRAVITY GRADIENT RODS

A satellite moving in the magnetic field of the earth will experience induced

eddy currents from the field. The eddy current loops produce a magnetic moment

which then interacts with the magnetic field to produce a torque. We will consider

the eddy current torques on the gravity gradient rods of a gravity gradient stabi-

lized satellite. The satellite is assumed to be in steady state motion (pointing

along local vertical) in a circular orbit over the magnetic poles.

The rod is in a circular orbit as shown in Figure <18_8_ always pointing down

along the local vertical.

M e

i_Id

Orbit

Figure 8-85)

Rod in Orbit Around a Magnetic Dipole

The rods are actually thin walled tubes. The eddy currents will be produced

on the surface of the rod and travel in circular paths as shown in Figure _-_. '

___ ip

io

Eddy Currents

B

Figure 8_9 _ "

Eddy Currents in Gravity-Gradient Rod
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The flux density at the position of the rod is

where:

.-A

B= _OH

-=_

H is given by equation (4) and

(8.25)

_o = 4_x 10 .7 Henry/meter

B is assumed to have the same value at all points along the rod.

If we take a closed path of radius a o on the surface of the rod, the flux

through the enclosed area would be

_=f_. d_= Tr'ao2 _. ;

r 3

(8.26)

In a circular orbit the geocentric radius is related to the angular velocity

by the equation

_)O 2 =K__
r3

where: _/ = orbital angular velocity
O

K = gravitational constant times mass of the earth

Also, the polar angle _ is a function of time through the relation.

_= _Jo t

The negative time rate of change of flux is the emf, namely

(8.27)

(8.28)

" nl (8.29)

The current flowing around the rod is equal to the emf divided by the resis-

tance of the rod along the path of the circular current. Total current in the rod

is, therefore,

!

C_'O L

io = 27_ao po
(8.30)
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where: To' = wall thickness of tube
L = length of gravity rod

#o = resistivity of the material (ohm-meter)

The total magnetic n_ment of the rod due to this current is

ao 2M = 7]" io r (8.31)

and the torque on the rod is

T = M x B (8.32)

After combining all of the above equations we find the following result for

the torque on a slpgle gravity gradient rod.

o Me (I cos 2_J t) (r x )

T = 2p ° K o

(8.33)

The constant _o Me/K appearing in equation (8.33) has a value of

_o Me volt sec 3
= 20.3 (8.34)

K M2

Magnitude of Eddy Current Torq.u_

The gravity gradient rods have the following properties:

ao (radius of rod) = .45 inches

o' (wall thickness) = .005 incheso (resistivity of copper) = 1.72 x 10 -6 ohm-cm.

The eddy current torque, equation (8.33), is seen to be always positive with

an average value of

, 3 2

o[.oTave _To La Me

2p o K

(8.35)

Upon conversion of units, the square of equation (8.35) becomes

2

= 1.5 x I0"II ohm hr 5
M_ ft
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#

and combination of constants for the gravity rods produces the factor

_'_'o' ao 3 1.726 x 10 "2 M3
ohm2/9o

Therefore, the average torque in terms of orbital rate and length of rod

becomes

Tav e = 2.58 x 10"13 L _Jo 5 (8.36)

An inspection of the average torque reveals that the torque is very small

and completely negligible in satellite dynamics. A plot of the average torque

versus orbital rate for various rod lengths in shown in Figure 8=i0. _.
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DEFINITION OF SYMBOLS FOR APPENDICES I AND II

English CaR£tal Letters

B = Magnetic Field Strength in Gauss

D = Operator Symbol - d_-
df

I = Moment of Inertia in slug-ft 2

IB ° = Yaw Moment of Inertia of Satellite in Slug-ft 2

M = Magnetic Moment of Dipole in pole-cm

M e = Earth's Magnetic Moment in pole-cm

Q = Internal Torques on Vehicle in ib-ft.

T = External Torques on Vehicle in ib-ft.

En$1ish Small Letters

a

b

m

q

r

t

= Real Part of Quartic Root

= Damping Constant in Ib-ft®sec/rad

= Average of Magnetic Field Variation

= Imaginary Part of Quartic Root

= Radius From Center of Earth in cm. or ft.

= Time in sec°

Greek Capital Letters

Magnetic Colatitude in Deg. or Rad°

Mass of Earth, used only as _= l=41x1016 ft3/sec 2

Magnetic Latitude in Deg. or Rad.
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Greek Small Letters

ffi Angle Between Magnet and Magnetic F_eld in Deg. or Rad.

ffi Angle Between North Geographic Pole and North Magnetic Pole in Deg. or Rad.

ffi Damping Fraction

O = Pitch Angle in Deg. or Rad.

= Gravitational Constant Used Only As ffi1.41.1016 ft3/sec 2

ffi Orbital Inclination in Deg. or Rad.

T = Time Constant in Orbits or Hours

0 = Angle Between Local Vertical and Magnetic Field in Deg. or Rad.

_n = Undamped Natural Frequency of Satellite

_o = Orbital Frequency or rate in Rad/sec

Subscripts

B =

D =

f

Dyn

Max

Min

Satellite

Damper

= Final or steady state position

= Dynamic

= Maximum

= Minimum

To avoid excessive use of subscripts, words will be used as subscripts for vari-

ables which are transient or intermediate
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_. P_R ANALYSIS

For simplicity, the mgnetlcally anchored satellite can be assumed to have

the Damper located at the center of the vehicle. Considering the earth as being

located on the negative x axis, the coordinate system will be described by

Figure I-i.
X X'

% I /

IB

/
_igure i-i

_ere : To Earth

the x axis is the local vertical (positive away from the earth),

the x' axis is the direction of the _gnetic field (positive away

from the earth) as shown

OB = Angle between axis of least inertia of the satellite and x axis

@D = Angle between magnetic moment of ithe damper and the x axis

= Angle between the X axis and the x' axis

IB = Pitch and Roll Inertia of Satellite in Slug-Ft 2

IB°= Yaw inertia of satellite in_,Slug-Ft 2

The analysis is planar and a _gnetic polar orbit has been assumed. In addition

the vehicle is assumed symmetrical with the satellite pitch inertia equal to its

roll inertia.
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Since only a planar analysis is being performed, cross coupling can be

i/ignored and Euler's dynamical equations become

TB " QB = IB @B I-I

TD " QD = ID % I-2

where T is the external torque, and Q the internal torque. The subscripts

B refers to the satellite, and D the magnet.

0nly one axis is being analysed and by Newton's Third Law.

QB = " QD I-3

The internal torque is the damping torque and is

QB = b (gB - @D ) I-4

where b is the damping constant (ft-lb-sec). _ter Substitution, Equation I-I

,and!:l-2 becomes

o OO

TB " b(@B " _D) = IB @B I -5

TD + B(@B " @D) = ID _D I -6

The only external torque experienced by the satellite is _hat_d_e gravity gradient

which is calculated from

TB = -3{Jo__.__2 (IB - IB ) sin 2@B I-7
2

whereto is orbital rate

The torque on the damper is predominately magnetic and is computed from

T D = -M Ho sin (@D + 0) I -8

where M is the magnetic moment of the satellite in p01e-cm

Ho is the magnetic intensity in Oersted

with a permeability of one, the magnetic intensity equals the magnetic field _ in

gauss_, hence

TD = - MB Sin (@D + _) I-9
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Representing the earths magnetic field by a dipole, the magnetic intensity can
be computed from

H = _r _I + 3 Sin 2 ! _ B I -I0

where

Me is the Earths magnetic moment in pole-cm

r is the radius from the magnet in cm

Z is the magnetic latitude

combining with Equation 1-9

TD = - MMe ¢I -:
--3. + 3 Sin 2 _ Sin (OD + _)
r

I -ii

To linearize the dynamical equations, it is necessary to define an average value

of Jl + 3 Sin 2 Z

An average value will be determined by the method suggested by M. Levinson in

NCEP Memo 131-098. The average is

/ ,^= _IA--^ 1(3 cos + l)
VZ _max//I minJA min '

is the magnetic colatitude.

m _

_-Amin 2 4

max = 90 ° + (_+6)

min = 90o ( _'+ 6)

where

dA 1-12

Integrating

I -13

I -14

where 6 equals the angle between the north geographic pole

and the north magnetic pole,and _ equals the orbital

inclination

Representing the earth as a dipol_ : O, and for a polar orbit, _= 90 °

Hence _max = 180° =_

Ami n = 0
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M=_ +3 E- (0) = 1.58

Shb§tituting into Equation I-ii

T D =-1.58 M M_.£e Sin (@D +_ )

r3

As given, TD would be in dyne-cm.

ib-ft.

El5

It is necessary to convert from dyne-cm to

TD = - I w 1.58 M Me Sin(@D+ 6) !-16
I.35581.107 dyne-cm r-_

ib-ft

T D = - 1.165 .10 -7 M Me Sin (8D + _) 1-17

P

The strength of the magnetic field is inversely proportional to the cube of

the orbital period.

Uo2 =
P

where _ = 1.41.1016 ft3/sec 2 and r is in ft

1-18

With r in cm,

_= 1.41.1016 (30.48 cm)3/sec 2 = 3.993.1020 cm3/see2

And

! =L#o 2

r3 _

_Ituting into Equation 1-17

= _-)° 2
T D - 1.165.10 -7

3.993.1020

1-19

Me M Sin (@D + @) 1-20

Simplifying
-28

T D = -2.918.10 _)o 2 Me M Sin (@D + @) 1-21

The magnetic moment of the earth is

M e = 8.064.1025 pole-cm (Ref G.E. TIS 63SD268)

,>
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Hence

TD = -23.53.10-3_Jo 2 M Sin(_ D + 6) I -22

T D = -.0235[_Jo 2 M Sin(@D + 0) 1-23

Combining Equations 1-5, 1-6, I-7, and 1-23

oo o . 3[Jo2 rT
IB eB + b(eB _D) +-'_B " I_ ) Sin 2@B = 0

2

I -24

ID _D -b(% - _D) + '0235[J°2 M Sin (eD + _ ) = 0 1-25

A new angle_will be defined to be

_= 8D + _ 1-26

where_ is the angle between the magnetic moment of the

magnet and the field. Then

?o=_D+_ I -27

In a Polar orbit, the field makes two rotations for every single rotation

of the satellite. Hence thea_4rage relatiVe:velocity between them is one orbital

rate, With 0 defined as shown

O

4 " CJo 128
00= _D 1-29

Substituting into equations 1-24 and 1-25

IB _°B + b(_ B -? - _/o) + 3_/o 2 (IB - I_ ) Sin 2@B = 0 1-30
2

OQ O

oID -b(O B - ) + .0235_/o2M Sin = 0 1..31

To linearize these equations, it is necessary to find the final angle in

steady state. In steady state, the vehicle and damper are in static equilibrium

mild o i oo _eB = = eB = = 0

Hence equations 1-30 and 1-31 become

b_/o = 3_Jo 2 (IB - I_ ) Sin 28Bf
2

-b[_/o = "0235%2 M Sin_ f

1-32

I'33
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Where the subscript f means final position.

Considering @B and _ to be small variations about OBf and _ f respectively

Sin 29B can be replaced by Sin 2(0 B + OBf ) 1-34

Sin _'/ can be replaced by Sin (T + Tf) 1-35

Expanding

Sin 2(0 B + @Bf) = Sin 2 OB Cos 29Bf + Cos 2 0B Sin 29Bf 1-36

Sin ( _• ÷ i}_f) = Sin _Cos 7f + Cost Sin _f 1-37

For 9B and _ small

Sin 2(@ B + 0Bf ) = 20 B Cos 29Bf + Sin 2eBf 1-38

Sin ( _ + _ f) = ]" Cos "/f + Sin 7 f 1-39

Substitating into equations 1-30, and 1.31,

.)t) +3_o2(iB I_ )OB Cos 28BfIB OB + b (0B _,

+3i_o 2 (IB - I_ ) Sin 29Bf - b{_/o = 0 1-40
2

+ .0235_)o2 M Sin Tf + b_o = 0 1-41

In both of the above equations, the last two terms add to zero by equations

1-32, and i-33,

Hence

if_ @B + b(OB " _ )+3[Jo2 (IB - I_ )0B Cos 2@Bf = 0 1-42

7D'_ -b(OB " )+ .023-5Uo 2 M ";)/Cos "yf: 0 1-43

These e_uations can be non-dimensionalized if a change of time scale is

•performed. Let

T =6Jot 1-44

Then

d d dt i d

d_ - dt d_ %-_ at

d2 I

cl "/" 2 {Jo 2

d

d t2

1-45

1-46
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oo

Using the notation to mean with respect to T

O

_o 2 IB _B +_ob(_B " _)+3_]o2(IB " I_ )0B Cos 2OBf = 0

_o__o7-_- _ )+0_Uo_ __0o_ :0

1-47

1-48

Simplifying

O

_B + b (_B " _) + 3 (I I_ ) OB Cos 20Bf = 0

II_]o I B
oo

- b (0 B - ) + ,0235 N___ Cos f = 0

ID [_ o ID

I -49

I -50

In operator notation

ID2 + b D + 3 (I -I___.__) Cos 2OBf I0 B
IB_J° IB _

1-51

IDLJo OB + + b D +.0235 M__Cos _ f = 0
ID-_Jo ID

I -52

These equations are linear and homogeneous, and for a solution, the deter-

i
minant of t_e coefficients of the variables must be zero (Cramer's rule)

Hence

D2 + b D + 3 (I - _B )Cos 20B b D

Y3_/o IB IBtj

[ ] [o ]" _ _ +_ + .o_ M_o_?'_
.- o IDa/o

I D

D4 ',_,

+ D3[b_.__ + b -
iIB_o I-__

= 0

o _D ID _]o I - Cos 20Bf
IB /

+ I<, I " IBIB)Cos 20Bf .0235 MID Cos_fl

'b

I -53

I -54
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Which can be reduced to four non-dimensional parameters

O

b . M , IB, IB

IB [_o ! B ID IB

+D

D4

+o31 (i+
_ o _D

b ( IB .0235 M CosTf + 3 i - l I Cos 21 B

IB [_ o ID I B IB j

I -55

114

Where

cos2 =f=co=Arcsini3 =__T °
IB

C°sT= CoslC Sin i-I _ _o (I' 1IM .02351 1-57

Solution of equation 1-55 will yield the damped natural frequency and decay

times of the system as a function of {_ o. The roots will be of the form

a + qi I - 58

Where

a = _ L,.),l i L.._o

;The time constant is

1 = 1

( _n a[_o

In terms of orbits

Time Constant =

I 59

I 60

I - 61

i

i = a T orbit

a _ 2_

T orbit

1-62



/.- B.
Steady State Analysis

The equations describing steady state are equation 1-32 and 1-33

b_ o = 3_o 2 (I B - I_ ) Sin 2_f
2

- b_ O = .0235 _/o 2 M Sin Tf

1-32

,I-33

These can be rearranged to

Sin 2_Bf = 2b = 2b ( i. >
3_o(I B - I{ ) 313_ o (i- I{/IB)

II-i

= - b = - b <IM__ i II-2Sin Tf .0235_o M IB_o --.- .0235

Since the yaw position of the vehicle is irrelevant, 8Bf may be considered an

error. The position of the magnet is totally irrelevant, and Tf is merely an

offset. However for reasons of stability the value of Tf should

not be too large. "Large" will not be defined here•

Considering eBf as an error, it should be kept small, hence 'I

2OBf = 2b i I!-3

 I-I /IBI31B[_O

8Bf _ IB_ o (i-I B /I B)

11-4

Since damping must be kept small, the natural frequency of the satellite is un-

changed by the damping. Hence,dividing the gravity gradient torque by the

inertia

LJ n = LJo_3 (I - I_ li B ) II-5

The magnetic disturbing torque occurs at a frequency of 2_oand, with light damping

the dynamic amplification is

I : I 11-6

_[i "(_Jf/[_n )2]2
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Which reduces to

OBf dyn

OBf

i

I, . 'I"\CJo3(I-IB/IB))

1 I

I3(I-I_/IB)-43(I'IB/IB) I

11-7

II'.8

3(1 - I_ /iB) _i-9

1+3 i_/IB

The maximum error occurs when the static error and the dynamic error add

OBfmax = OBf (I + OBf dyn )

OBf

II -i0

= @Bf f 1 + 3 I_ /IB + 3-3 I_/I B

\ 1 + 3 I_/IB ._

=OBf C 4 _
1 +3 I_/I B TI-12

II-11

Finally

OBfmax _ B _ 0 (1-1_/IB)(I + 3 I_/I B)

II_i3

This equation is plotted in Figure $-2

Considering T f as an offset, it will not be considered small.

frequency of the magnet is approximately

_n = _JoJ .0235 M 11-14

I D

For a magnetic moment of 2000 pole cm, and a damper inertia of .01 slug-ft 2

_Jn = [Jo/2.35.10-2 .2 .I03 = 68.6_) o II-!5
v 1.10-2

The natural
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Considering the magnet to be critically damped

Tfdyn I

_(2[_f/_ n )2 + El._.)f_jn)2 ] 2

11-16

The disturbance torque on the magnet is also 2%

Hence

_f dyn i

T f Q2x2 o J [1-f2UJo ]E s.6%
_f dyn = I

T f /.0034 + I

_f dyn = 7f and

=I

11-17

II-18

II-19

And Sin

2 I B _Jo .0235

11-20

In connection with the use of this graph it should be noted that the constant

.0235 is based on an average field strength. For an overall vehicle perfor-

mance, this average is adequate. However, to prevent the magnet from deviating

too far from the magnetic field, it is desirable to consider the weakest field.

The constant then becomes

.O235
x I = .0149

1.58

Hence
Sin 7 =

-"-'7"fmax IB _ o .0149

Rearranging

11.-21

M -b_l_ i II_22
IB I_o .0149 Sin 7fma x

This is the equation plotted in Figure 4-3

L

\
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DEFINITION OF SYMBOLS FOR APPENDIX III

The symbols are as defined in Nomenclature at the front of the report, with the

following exceptions -

aW = wire spacing from center to center on mesh

D = vector to the center of the lens shape from the center of the spherical

F =

Ji,J2,..J7 =

L

mw

NW

surface

force vector with appropriate subscripts

constants in terms of

= Torque vector with appropriate subscripts

= Number of summation terms to be taken to find the total case

tI --

_L =

_' =

A¢' --

uv torques

number of case uv longitude wires grouped together as identical to find

the summation of the wire torques.

thickness of the wire

torque lever arm for both the offset and the geometry of the vehicle.

latitude angle of an incremental surface area of the wires

change in ¢' for consecutive longitude wires

value of _(see Nomenclature) along the edge of the shadow line

change in_(see Nomenclature) for consecutive latitude wires

Subscripts

a = indicates latitude wires

b = indicates longitude wires

T = indicates summation of all similar wire torques

= used when _ _ @' for longitude wires and _ _iu

uv = used for total of u and v quantities - Sun can see inside and outside

of conical longitude wires
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APPENDIX III

SOLAR TORQUE ON RADIAL SIDES

To the present the surfaces illuminated have been considered as parallel to

the surfaces of two spherical segments. With a square cross sectioned wire mesh,

this is half of the illuminated surfaces. We now consider the radial areas. The

sun can see at most two surfaces of a square cross sectioned wire. Consider the

wires as two types, longitudinal, that is, going around the configuration's axis

of symmetry, and latitude wires, that is, arcs of circles all of which pass through

the axis of symmetry. The planes of these arcs all contain the axis of symmetry.

These two wire types each havetwo cases. The front and back surfaces of the

complete configuration each present a different geometry so each is considered.

Let the subscripts "a" be on terms concerning the latitude arcs and "b" be

on terms concerning the longitude circles for the surfaces closer to the sun.

The respective subscripted quantities primed are the respective quantities for

the back surfaces farther from the sun. Shadowing is neglected but may be added

by a proportional multiplier approximation.

Latitude Surfaces Closest to Sun

Figure lll-I shows the area in the _ ] k coordinate system.

Figure III-i

The vectors in Figure III-I are more easily seen in Figure 111-2 where

measures from the geometric center of the lens. From this figure,

r = +

or \--r-

NowTwe le_. -

..9 ...#

x + V L

- X

r.
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<
\

>

/
F

Figure 111-2

The vectors na, s, and h a are then

n a = cos ,s = , h a _ r

L-sin _ L.,sin O

(sin _ - cos _')I

sin (_' sin

sin O' cos

(i11-i)

The offset vector (not illustrated in Figure III-i) is,

Exolx= YL

zL

(111-2)

The incremental solar force on a differential area dA is, as explained previously,

2 Pd n(s'n)+2 Ps n(s'n)2] (III-3)_F = PodA [_(_'n)(l - Ps)+

and the torque about the c.m. of the balloon is

X dF = X _F - x X (111-4)
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Where h may be considered as the vector from the geometric center of the complete
balloon to a dA.

From Figure liE-l,

The___

dAa = r _i d _' (111-5)

s.n a = si_ @ sin _ (111-6)

(I - Ps)Sin$ cos@ sin_l_

d_Fa = 2or T I d_' + 3OdS in@sin,, _$cos _5+2D :_sin2@s in2'l_cos,,

-(I - Os)sin2@ sin_- 3D d sin_sin2_ -2PsSin2@sin3_ )

':" • (111-7)

Then the torque integrated over this one wire arc is, from Equation (111.-4),

(_ -¢)

L-_a=/_ (h_a x)X _Fa':= L'ha _ _xa (III-8)
_ -¢)

2

where Lh a : (-_-:-0 )

ha X d-'_a

-(_ -¢)

and L_:a = xX_2 _F a

J_(+

Breaking Lha into components gives,

, (_-¢)

Lhal = I

-_- -e)
2

(111-9)

= _ X _a (III-I0)

P r2-" ( s'in_ E 2 $_o II ' sin_b (l-Ps)sin2@sin0 " _Pdsin@sin2'b -2DsSin2@sin3_

-sin_'cos _ _dsin@sinl_ cos %+2 _ssin2@sin2l,']cos d _' = 0

Lha I = 0 LhalT = 0 (111-ii)
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since all terms are odd functions of_'

dLha2 = Po r2 T 1 {sin _'eos,_[(1- p_)sinOeosesin,_]*(sin_-cos_') E(1-ps)sin2esi-_''

2 Pdsi n @ sin 2 I/,+ 2D s+ _ sin2@ sin 3 _i_ } d_'

Integrating from _' = -C- - _) to 0' # - 0) gives,

o 2 Pdsin@sin2_# +_Ossin2@sin3_.Lin O__@d@'-#o2s¢' dLha 2 = P rE T I E(l -Ds)Sin2@sin#)+ _ 2<
- ( ) - (2 -¢)

Lha2 = P r2 TI )sin2@sin,6 +2 _ dsin@sin2_ +2PsSin2@sin3$)]. [2 (2 -@) sin@-2cos@]
o ' 3 (ii!_12)

The summation of each wire's torque may be approximated by an integral by solving

the trapezoidal rule for the summation,

n_ Y" =_x y dx + Yo + Yn
i = o i 2

(III-13)

!

Letl_' be the change in 4 for adjacent wire centers. Then if a is the
W

distance from the centers of adjacent wires, we assume this is the spacing at

the periphery of the balloon.

We have

a w
_0 = (III-14)

r cos_

Integrating (III-12) via (III-13) from U = 0 to 8 = _ and substituting (III-14) gives,

r cos_ [(_, _)sin_-cos_] • sine[2(l- Ds)sin@Lha2T = 2Po r2 T1 aw

8

+' _Pd + 3 Ps sinO]

Lha2_ 2P r 3 TI
= o aw sinOcos_ [ (_- _)sin0 -cos _]" [(2 _Ps)sin@ + _ 0_i]ii_15 )

This is the total torque second component due to all the latitude arcs closer to the

sun. The first component was found to be zero for each wire in Equation (III-ii),

The third component is,

* This notation is used only in this one equation and has no other significance.
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i.

N

i. I_

l{:

:i

i

°

I

.i

J

' (III-16)-_

This component is now integrated via the trapezoidal rule in reverse, Equation (III-13)

from @'=-0 to _)= Y, piecewise

Lha3T = 2 Por2rl r aC°SSw - sine - cos " 3 Pd sin e sin_cos_bd$ *

+ 2 Ps sin2 sin $cos _)d = 0 (III-17)

We see from Equations (III-8) and (III-10) the integration of the forces Fa

From Equation (III-7),

a-li-9 a
= 2 (2-¢) PorT1

are needed.

i

(1 - ps ) sin e cos e sin _b . __

+ 20 d sine sin#) cos@+2Ps sin20 sin2 _cos _b
3

2
- (I-Ds) sin2S sin_)- _ 0d sin0sin2_D-2Ps sin2 0 sin3
- (III-18)

Then the torque first component is, from Equation (III-10),

Lxa 1 2 - Porrl L (1-Ps) sin2ssin$- 3 Pd sin_lsin2 _b- 2Os sin2 _1sinS *

])ZL Pd sinesin_bcos_b +2p s sin 2 e sin 2 @ cos @ (III-19)

and a piecewise integration of the wires in(III-19) from $ = 0 to @ = ?r using (III-13) and

(112-14) gives,

(2 _)_ r cos _ . I2 sin2e+ _ sine+8 sin2e]LxalT = -2 Po r 1"1 YL (1-Ps) 3 Pd Ps
a w

(2) YL [( 32ps) 3_' ]Pd (III-20)LxalT =-2 -¢ Po r2a vl cos¢ sine 2 + sine+
W

__ o) o] r_2 2 - Pots LL(1-ps)sinec°sosin +XoL(1-O s)sin 2osin_b+

+ _ p d sin e sin 2 _b+ 2 p s sin2Osin 3 (IIt-21)
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and piece wise integration of the wires in (III-21) from _P= 0 to tb = ?r using (III-13)

and (III-14) gives,

Lxa2T = 2 (2 - ¢) P rl"lo rcoSC_aw ( 2zL(1-ps) sin0c°s0+

I _ 8 sin 2 0_)x 2 (1 -Ds) sin 2 0+ _ Pd sin0+ _ 0 s
O

L = 2 - P r -- cos ¢ sine
xa2T o aw

2z L (1 -ps) COS 0+

+ X° (2 + _ps) sin0 + _ Pd (III-22)

Lxa3 - 2 (2 - ¢_ Porl:l (Xo I2 Pdsin0sin_bcos _b+20s sin20sin2_c°s_ +

- y,, E(_ - _s) _in e cos 0 sin *_) (III-e3)

and piecewise integration of (III-23) by (III-13) from $ = 0 to $ = Ir using (III-14) gives,

L -- -2

xa3T
(2 -$)P ro 1:1 rcOS$a

W

2y L (1 - Ds) sin 0 cos 0

(" -Lxa3T = -4 2 - r2 aTlw (1 -Os) YLC°S Csin 0cos 0 (III-24)

From Equation (III'8)L' _in components is, when integrated to total the effects of

all such wires,
I:L .I.

"_ _" (III-25)
I_aT = Lha T - Lxa T

The components of __I_aT are found in Equations (III-11), (III-15), (III-17), while (III-20),

(III-22) and (III-24)form L xaT"

Lal T = 2 -_ Por _aw YLC°S ¢ sin0 +_ sin 0+_ P (III-26)

from Equations (III-11) and (III-20).
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The secondcomponent is found from (III-15) and (HI-22) substituted into (III-25)

La2T :: 2 Por "aw sin 0 cos ¢ r - sin ¢ - cos • 2 t -3 Os) ';

sin 0 t _ o d

"  J..to sin 0 + _ 0 d

-¢I_ZL (1-O s)
COS O + X " -_

o l_: _Ps

(III-27)

2, (La2 T = 2 Por --aw sin0cos ¢ sin @
(r sin ¢ -x ° ) - r cos

2 (2 -¢)(1-DS) ZL cos @÷
Od _ - ¢ (r sin® x)ro cos,i_}

(III-28)

La3T = 4 (2-¢) p r2o -- (1 - Ds) YL cos ¢ sin e cos oa
w

from Equations (III-17) and tTII-24) in (III-25).

Latitude Surfaces Farthest From Sun

Figure III-3 shows the area in i j k coordinates.

5-,(
A I

'!
J

\1r , ......

!........... (_ ;:/r_

\ \g_,' , 1

_" \_1
(Figure III-3)

(III-29)
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Equations (I!I-1) become

I°Jn -- OS ID S
a

[_- sin L- sinsJ
h'a = r (III-30)

,-1

(sin_- cos_1]

Jsin ¢' sin

sin ¢' cos _

The offset vector ([17"2) becomes

X = Ix°]YL

z L

(II1-31)

and equations (III-5) and (III-6) are still

dA _ = rl": d 'i (III-32)
a 1

!s • n = sin 0 sin _ (III-33)
a

A comparison of Figures III-1 and III-3 shows that n a = n'o and _ = _' always and s

is unchanged. Also dA a = dA' a. Therefore dF a = _F' a. We a_lso see the variables ¢'
and $ are to be integrated over the same intervals as in the previous case. But Ha --: :i_' a

always. Equations (III-8) to (III-10) for this case are

f _ _' 'ha
-':_ t -L = -x }XdF' = L L'

a a a xa

which maT,, lie ',written

@-¢)
L = {-h -x) Xd_F : - -L

a a a a xa

(III-34)

126



and piecewise integration of _ from 0 to _r gives

-_' L LxaTL aT = - . haT -
(III-35) '

The components of _haT are.given in Equations (III-11), (III-15) and (III-17). The com-

ponents of Lxa T are given by (III-20), (III-22) and (III-24).

Then

-r t'- o -'1

L' = 2 - ¢ P r YL cos ¢ sin e 2 + _ Os sin 0+ _ (III-36)
alT o a W

, 2
L = -2P r

a2T o
a sin {9 cos e r - sinC_eos ¢ • 2+_ Ps "

W

• sinO+y Pd + - z L (1 -Ds) cos 0+ x + 0s "
O

• sin O + _ Pd (III-37)

, 2 T1 ( ( 22 1[(2)Lag T = -2 Por maw sin {9 cos ¢ sin e +3 Ps - $ (r sine+ Xo) -

co, "o,,rr s,o0+Xo)-__oos+,._ ,, _+
- r cos ¢] ) (III-38)

' (2°)
La3 T = 4 - Por --aw (1-Ds) YLCOS $sin 8cos {9 (III-39)

This completes the derivation of the "a" torques. These are expressed in com-

ponents in Equations (III-26), (III-28), (III-29), (III-36), (III-38) and (III-39). If there is

no shading

LAtT = LaT +La'T

(2) 2 _i [(2 2 ) ?t ]L , ' = 4 -¢ P r -- YLCOS¢ sin{} +_D s sin{}+ 3Pd (IIi-40)
A 1T o aw
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LA,2T = 4 Por --a sin 0 cos ¢ sin e • 2 + _ x ° -¢
W

+

_oo,,.2(: 0)(,_0.).,+ [_Xo(2_0)])(IH-41)

(2 _) 2 T1
LA,3T = 8 - Por --aw (l-Ps) YLCOS _sin ecos e (iii-42)

The torque LA, T given by Equations (III-40) to (III-42) is a theoretical consideration
in which absolutely no shadowing exists. Actually the back surfaces are shadowed by the

front surfaces. This is approximated by taking only a proportionate amount of the back

surface torques. The front surfaces are shadowed by themselves around the edges. This

effect is neglected. The total torque on the whole lens' latitude radial surfaces is

-_ -_ -_' (III-43)
LAT = LaT + K 1 L aT

where EaT components are given in Equations (III-26), (III-28), and (III-29) while the

components of L'aT are given in Equations (III-36), (III-38) and (III-39).

Longitude Surfaces Closest to Sun When ¢' > e
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CThe vectors nb, s and are

n b Fsin Fccos ¢' sin_) s = Os e

Lcos $' cos ¢_J _- sin eJ

The offset vector (III-2) is

Exo]x = YL

z L

--r I 1sin ¢ - cos ¢

sin ¢' sin

sin d cos

(III-44)

(III-45)

Also

dA b = 7 lr sine' d_b

s. nb = cos esin¢' - sin0cos cos $ (III-46)

For this case, Equation (III-4) becomes

-- _\xa_b-xx b: b,b- (III-47)

where

-_ fhb dFbLhb = X

Cb = xX = xX

(m-4s)

(III-49)

If Equations (III-44) and (III-46) are substituted into (III-3), we have the force components

of d_Fb
r-

dFb I = P _:1 r sine' d@ L(1 -ps) (cos 2 esin$' sin ecos ecos ¢'" o - cos _) +

2
+ 3 Pd (cos e sin 2 _' sin 8 sin ¢'- cos ¢'oos $) + 2 0s (cos 2 e sin 3

- 2 sin e cos e sin- cos J 'cos _) + sin 2 0sin _' cos 2 _' cos 2 _)
_J

!

¢-

(III-50)
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dFb

dFb3

2
PoTlr sin¢ d_b Pd

+ 2Ps (cos 2 0 sin 2 ¢' ¢'cos sin $ - 2 sin 0 cos 0 sin ¢

+ sin 2 e cos 3 ¢' sin $ cos 2 $)_

PoTi r sin ¢' d_ 1 - Os) (-sin e cos e sin ¢

(cos e sin ¢' ebs 5' _sin" $ - sin 0 cos 2 ¢ sin _bcos _) -i

2 ¢,cos sin _ cos _

(III- 51 )

• 2 ¢,+ sm O cos cos ¢) +

2 ¢, ¢,+ 3 Pd (cos 0 sin cos cos _b- sin {_ cos 2 ¢'

(cos 2 0 sin 2 ¢' ¢', cos cos $ - 2 sin 0 cos e sin ¢

sin 2 0 cos 3 ¢' cos 3 _b)_+

-j

2
cos $)+2p •

S

2 ' 2
cos ¢ cos _ +

(III-52)

Substituting the Equations (III-44) and 0TI-50) through (III-52) into (IH-48) has as a first

component,

2 0(dLhlb = Pe_'l r sin sin . 1 ps) (.sin Ocos Osin¢' sin_ '

2 , ,
+ sin 20cos ¢' sin_bcos _b) + _ 0 d (cos Osin¢ c_s ¢ sin¢cos _b-

sinecos 2¢ sin_bcos 2 _) +2p (cos 20sin 2 cos ¢' sin$ cos ¢

, 3
- 2 sin 0 cos e sin ¢' 2 ¢, ¢ c_s_ _, stn2_ dos 3 ._f sing' cos _lcos si_ -_ - -

,F2 , ¢, 2¢,
sine [ 3 Pd (cos 0sine cos sin_)cos $- sin 0cos sin _bcos 2 $)+

+ 2 Ps (c°s2 e sin 2 ¢' ¢'cos sin $ cos $ - 2 sin O cos e sin ¢

-sin_bcos2_b+sin20cos 3¢'sin$cOs 3 $)_ d$
JJ

Integration of $ from -17 to _ gives

(m-53)

Lh = 0= 0 L bT
i b h I

(III-54)

since all terms are odd functions of _b.
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--)

The second term of L is,
hb

2 '( O'E--dLh2b " Po T1 r sin ¢ sin (1 0s)
(cos 2 e sin ¢' cos $ -

sin {} cos {} cos ¢' 2 2- cos (b) + _ Pd (cos Osin 2_ cos _-,

- sinOsin$' cos ¢' cos 25) + 2_ (cos 20sin 3 ¢' cos _b -

2 sinOcos esin 2 ¢ cos cos $+ sin 2 esin cos c°s3 _)) I. ' _, 2 _b' 2 ¢,

! r ! _ T- (sin_b- cos ¢) (i -Ps) (-sin {}cosesin ¢ + sin2 ecos ¢ cos @) +
t_

2 , ¢, _, •+ 3 Pd (cos Osin¢ cos cos _P- sin ecos 2 cos 2 @) +2 Ps

(cos 2 0 sin 2 ¢' cos ¢' cos _- 2 sin 0 cos 0 sin ¢' cos 2 ¢' cos 2 _ +

3°,+ sin 2 {) cos cos 3 _ d

Integrating,

Lh2b
=P

0

+ (cos 2 0 sin 2 _'

(1-Ds) IsinecosOsin¢' (sin_-cosq_') /d$ +

- sin 20sin¢ cos ¢' + sin 2 S cos 2¢') fcos $d$ -

- sin 0 cos 0 sin ¢' cos ¢

• FcosOsin¢' _cos_)d_)-sinO cos¢' f?os2g) d_b_+

t- fl , 2 2 ' "

+ 2Ps(1-sin_ cos_b)Icos {}sin ¢ fcos d -

2 sinecos esin_' cos_' _eos 2 _d$+ sin 2 @cos 2 ¢'

1 2 ¢,OS 2 _bd$ + 3 Pd (I - sine cos ) •

(III-55)

Integrating Equation (III-55) from $= - _ to _b= 17 gives
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)

Lh2b

Lh2b

2

_P rlr0
sin_' (1 -ps ) sinO cos 8sin_ (sin_- cos $) -

- sin 8 cos 8 sin _' cos _' + 32 Pd (1 - sin ¢ cos _') - sin {9 cos

E 1+20 s (1 - sin_ cos _) - 2 sin8 cos 8sine' cos ¢

2 _( ¢, ¢,P r 1 r sine 1 -Ds) cos 8 (2 sinCsin 2 -3 sin 2 cos ¢') +
0

2 _, '- _ pd sin cos ¢_ (I - sin_ cos_) -4D s cos O sin2_' cos _'

• (I - sin ¢cos _')_ (III-56)

For piecewise integrations _ ¢', the change in _ between the centers of adjacent

longitude wires Is
a

_ ¢, _ w (III-57)
r

assuming that the wires are spaced by a .
w

v v _'

Piecewise integration of (III-56} from _ = 8 to ¢ = _ - ¢,

r2 ( E_-w ( <j 8}Lh2bT = _TPo rl sin 8 (i - ps) cos 0 1 - @ + sin 8 cos

3 .)- cos $ + sin 3 +

+ Od

- sin e cos @ + J4)7,_j

+ 2sin 8 cos 3 8_

2• cos O + J6

+

sin ¢ -

(2 sin 2 Osin_ -3 sin 2 Ocos O- sin$cos 2 $ +

1 1
sin 2 O + _sin ¢cos 3 _)+J + _ (sine sin 8cos20-

• )i1 3 +
sm O+J 5

F

sine<- 8- sinOcos O+

(- sin 2 O cos 8 + sin ¢ sin 2 O"

(nI-5S)
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The third componentof Lhb is, using Equations (III-44), (III-48) and (III-50) through
(III-52),

dLh3b
2

= P _-1 r sineO _, _ 2 ¢,(sine -cos ) _ p d (cos 0sin cos ¢' sin _-

- sinecos 2 ¢' sin $cos_)) + 2p (cos 2 0sin 2 _' cos ¢ sin _ -
S

- 2 sin e cos e sin $' cos2cb ' sin $ cos _b+ sin 2 e cos 3 ¢' sin _bcos 2 _b)_

J
f-

- sine' h(1 -ps) (cos 2e sine' sinS- sin0cos ecos_ sin$cos $)+

2 _, ¢, _, •+ _ ad (cos e sin 2 sin (b - sin O sin cos sin _bcos _b) + 2 Ps

• (cos 2 0 sin 3 ¢' sin _b - 2 sin 0 cos 0 sin 2 ¢' cos ¢' sin _ cos $ +

+ sin20 sinCVcos2¢'sin$cos2_)_)d_b

Integrating $ from - _ to _r gives

(III-59)

N3 b = 0 Lh3bT = 0 (III-60)

since all terms are odd functions of $. Now Lhb T is complete.

--4

From Equation (III-47) and (III-49) we need Fb so from (III-50), (III-51) and (III-52)

integrated from _b= - y to 17, we have a first component of

Fb: 1 _( 2= - " + 3 Pd 2 cos O sin 3 +rrPorlr 1 ps) 2cos 20 sin 2¢' • _'

+ 2 Ps (2 cos 2 0 sin 4 _' + sin 2 0 sin 2 ¢' cos 2 _')_ (III-61)

Integration of Fbl for all the circular wires via Equation (III-13) from ¢' = 0 to ¢' :- £ - ¢
give s, 2

FBIT=, P 1.1r((l_Ps) COS2e Ia___- 2 )_o (J1 - 0+ sin0 cos 0) + (sin 2 0+cos ¢ +

+ _ Ddcos O " -_ (2 1 (sin 3 3 )_cos O+sin 2 @cos 0 J2)+_ 0+ cos ¢
L

+

i
I

i

!
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r_

W

fi

(_1sin ¢ cos3_ +

1
sin 20. _ (2 sin0{J1 -o + sin O cos O}/+

+ _ 2 cos 20 (sin 4 0 + cos _) ;_'sin20 ($in2ecos281+ sin 2 _cos 2 _)_

sin 3 0 cos 0 +

0- sin0 cos 0-0+J7)_.j
COS 3

(III-62)

The second component of Fb, Equation (III-51), when integrated from _b= - It to

_) = ?r is

Fb2 = 0 Fb2 T = 0 (III-63)

since all terms are odd functions of _b.

The third component of Fb, Equation (III-52) when integrated from $ = - y to $ =

is,

E2 2 ' 2
Fb3 = - - + 3 Pd sin¢ cos

_P T1 r sin 0 (1 ps) cos 0 sin2 _'
O

+4PS COS 0 sin2 _' cos2 ¢,J

!

and piecewise integrationfor all the longitude wires in the range ¢

Fb3T

!

¢ +

(III-64)

=0toe) = _ -¢ gives,

=-_ Po "lrsinO((1-Ps) C°S@ [_- w (J1 -0+sin0 c°sO)+(sin2O+c°s2O)_

2 I r___ . 1 (cos30_sin3¢)+l(sin0cos20+sin2¢cos_)_ +
+ 3 Pd aw

f--

COS 0 I a--_,' 1+ 4Ps " 8 (-o- sin0 cos O+ 2sin0 cos 3 O +J7 ) +

1 (sin 2 0 cos 2 0 + sin 2 _ cos 2 ¢)_+y

The torque LxbT is found by piecewise integration of Equation (III-49),

(III-65)

Lxb T = x X FbT (m-66)

+

.,

,

i

q
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The Equations (III-45), (III-62), (III-63) and (I1"I-65) substituted into (III-66) gives a

first component of,

LxblT = YL Fb3T (III-67)

since Fb2T = 0, where Fb3 T is given by Equation (III-65). The second component of

Lxb T is

Lxb2T = z L FblT-X ° Fb3T
(m-6s)

where FblT and Fb3 T

of Lxb T is

are found in Equations (III-62) and (III-65) and the third component

Lxb3T = - YL FblT (III-69)

where again Fbl T is found in Equation (III-62).

Piecewise integration of Equation (III-47) is

_.bT = _hbT _ _xb T (III-70)

where the components of Lhb T are found in Equations (III-54),(III-58)and (III-60)while

the components of _bT are found in Equations (III-67),(III-68)and (III-69).Note (III-54)
and (III-60)are zero.
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Longitude Surfaces Farthest from Sun . 0 < ¢'

Figure III-5 shows the area in ijk coordinates.

I
I

I

The vectors nb,:-' a' -and h_ are

Figure III-5

:1 L.J 1
p°sel [8_0: [_,_m0_oos0

_= I cos¢' sin s= 0 h_ =r I-sine' sin#)

[.cos _' cos sin L-sin ¢, cos

The offset vector is

iols

x" YL

L

And

dA_ = _'1 r sine ' d¢

s • n_= +cos 0sine' -sin 0cos ¢' cos _b

(III-71)

(III-72)

(III-73)
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By comparing Figures 4 and 5 we see that s and x do not change, dA b -- dA_), nb =

at all positions and hb - -h_ at all positions. Therefore dF b z dF_. Also we see that

integrations in this case are over the same regions as was in the case closer to the sun.

We may write these torques like in Equation (III-70),

%'T--EbT- LxbT (iii-74)

Equation (III-48) indicates that

-_' - h_X - XdF bLhb " -

then " -- LhbT' "- LhbT

(III-75)

while from Equation (III-49)

L'xb_X'XF_=xX Fb- Lxb

then, L' _-xbT LxbT

(III-76)

Equations (III-75) and (III-76) substituted into (III-74) gives

%T LxbT (III-77)

where the components of Lhb T are respectively Equations (III-54), (III-58), (III-60) and

_he components of Lxb T are Equations (III-67}, (III-68), (III-69). Again (III-54) and

(III-60) are zero.

Like Equation (III-43), the back surface is shaded a factor of K 1 so (III-43) becomes

for this case,

LBT - LbT + K 1 I_T (III-78)

Case when¢ ' < 0 on Longitude sides closest to sun

Figure (III-6 i shows the area in thei|k coordinate system and the related vectors.
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With _' < e, s shines on the outside and the inside of the cone.

equation is valid only if nb " _ _ 0 therefore let _)1 be _when s ' n b = 0.

define Eb for _9< _1" Let these _b s be respectively gbl and Eb2. Then

_= hb=r sin¢' sins x= YL

L-sin eJ sin ¢' eo_ _ .. L

and the normal vectors are

nbu =

v =

I isin¢ ' _1cos ¢' sin where _9 < _ 1

eos ¢' cos

os ¢' sin _ where _ > _91

os ¢' cos ¢

We may find @1 by s- • _bu = 0.

Is" nbu sin Ocos ¢' cos $l cose sine'=0

Figure III-6

The solar force

Then we

(III-79)

(m-8o)

(111-81)

t

t
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Then

tan¢ ',h
COS

_I = tan e (111-82)
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Since ffbu = -ffbv we may compare this case with the case when the sun _ sees only

the inside of thb cone, Figure III-4. In this figure, nb= nbv -- -nbu. Therefore if _ ( _1'

(III-50) through (III-52) become

dFbl u -" Po_lr sin ¢' d_ -40s)(-cos28sin¢ ' + sin 0cos 8cos¢' cos _) + (cos0sin ¢,

-sin0sin_ ' cos c_' cos _)+ 20s (-cos 2 8sin_ '+2sin0cos 8sin2¢ ' cos¢' cos _-

{}sin _b' cos 2 ¢' cos 2 _)1 (III-83)_S _ 2

r- .3

dFb2u=PoTlr sine' d_bl 2-0 d (cos{} sine' cos_5 ' sin _b_ sin Ocos2¢ ' sin _ cos _)+

.+2s(-COS2eO sin2¢'cos ¢' sin_+ 2sin0eoses_n¢'cos '¢_sin _cos_ cos3¢, sin _,cos 2

(III_84)

dF b u-'PTl, r sin_' de I i(1.-Os)(Sin0cos 0sin ¢' -sin20cos¢ ' cos _)+

2 , , 2 2
+ -_,Od (cos0sin¢ cost cos_b-sin0cos ¢'cos _) +20s(-COS2e sin2_'cos .¢_cos_ +

+2sinecos0sin¢' cos2¢ ' cos2_- sin2_os 3 ¢, cos3_) I (III-85)
.3

We may readily see that if Equation (III-53) had the specular reflection and absorption

sign changes, it's integral from -_1 to _1 would stillbe zero, therefore

LhlbU = 0 LhlbT u = 0 (111-86)

Changing the sign on the specular reflection and absorption terms and integrating

Equation (III-55) from _= -_)1 to $ = $1 gives

._ Lh2bu= Por_ r2sin¢' _l--Ps) I-2_l sin Ocos Osin¢)' (sine-cos¢')-

-2sin(b 1(c°s20 sin2¢' -sin20 sin ¢ cos ¢ ' + sin20 cos2¢ ') +

-]

+($1+sin$1cos _bl)sinOcosO sine ' cos¢_ +
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2-3- Pd (l-sin_ cos¢ ') sin_leosOsin¢'-(_l+sin_icos_l)sinecos¢ +

+2p S(1-sir_cos¢') _-2sLn$ lCOS20 sin2¢ ' + (III-87)_-_

2 2 2 2.]

+2sinOcosOsln¢' cos¢'(_l÷sin_blCOS_bl)- _- sim/)l(2+cos _bl)sin ecos ¢J

Integration of (59)from _ =-_i to $= _bI with the sign changes gives,

Lh3bu = 0 Lh3 buT = 0 (III-88)

To find the offset torque we need to integrate dFbu from $ = -$1 to $= _/)1" Thus the

first component is, using (83)

Fblu " Po_r sin ¢' {(1-Ps) E-2_) lCOS2e sin¢'+2sin$ lsin 0 cose cos¢' 1

+ _- Od _l_lCOSeS_n_ ' - 2sin_ls_nesinCt cos ¢ +

+20s E21_1 c°s2Osin3_v +4skn_blsinOc°sOstn2¢t c°s¢' -

-(_b 1 + sin $ lCOS_])1)sin2esin¢' cos2¢'_ )

+

(III-89)

Integration of Equation (III-84) from $ =-$ to $ = $1 gives1

Fb2 u = 0 Fb2uT = 0
(III-90)

and integration of Equation (85) from $ _-_b1 to _b = $1 gives

Fb3u= Pjlr sine' ((1-Ps)E2_bl sinec°s0sin¢' - 2sin$1sin20cos_ _
+

2
+ -_-0 d

F 2 2

+2Ps L2sin$1cos Osin ¢'cos¢'+2(_bl+sin@icos_bl)sinecosO

-32---=sinai(2 + c°s2_bl)sin2Oc°s3¢'_)

JI2sin_b 1cos OSin¢'cos¢' -(_b 1+sine lCOS$1)sinecos2¢_ '
+

(III-91)

sinCb,cos2_, _



Instead of finding those u torques we duplicate this work on the v torques. Since

these equations are very similar, they combine in many places.

When $ > _1 ,• Equations (III-44) through (III-53) are valid. From the table of

integrals for integration of $ from _1 to 2y- _b1 in Equation (III-53) gives

LhlbV = 0 LhlbT v = 0 (III-92)

Likewise Equation (III-55) fits this case. Integration of this equation from $1 to 2y- _b1

gives,

Lh2bv 2 2= PJ1r2sin¢ ' 1-Ds) (y- $1)sinecose sin $'(sin¢ - cos ¢')-2sim]_l(COSe sin

- (y- _bl-sin_blCOS$1)sinScosSsin¢'cos¢'_ +sin28cos2 ¢,)+

_9

E-Od(l_stnCeos¢, ) 2sin lcosesin¢'-(rr- l-Sin blcos bl)SinOcos¢ ++3 '

+2P s (1 -sin¢ cos¢ ') I-2s in_leOS2O sin 2 ¢' - 2 (_"-_b1

2 2_l)SLn20cos2¢t )--_-sin_b 1 (2 + cos (111-93)

-o

The third component of Lhb v is found by integrating Equation (III-59) from _= _1 to

$= 2_ - $1

-sin_blCOS@l)sine cose sin¢'cos_/_' - .

Lh3bv = 0 Lh3bv T = 0 (III-94)

Integration of Equations (III-50), (III-51) and (III-52) from _ = $1

the components of Fbv,

Fblv=PJlrsin¢'((1-Ps)_2(_-_l)COS28sin¢' +2sin_lsinScosOcos¢ '_

+ 3- Pd (?r- _b )cosO sin2¢ '+ 2sin_bI sin 0sine'cos +
L

+2ps _(?r- _bl)COS2esin3¢'+ 4sinsI sinScos esin2¢ 'cos¢ ' +

+(_-¢1- sin _blCOS¢l)Sin20sin¢'cos2¢'_)

to $ = 2_r- _bI gives

(III-95)
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' I

• Fb2 = 0 Fb2 = 0..' v vT

{, E-Fb3v= PoVl r sine' 1-Ds) 2(_- _l)sinScos8sin_'-2 sin_lsin28cos¢ +

(111-96)

2 E- _1 $1-sin_)lCOS_bl)sin8 cos2$ '1+-3- Pd 2sin cosSsin¢' cos _' - (Y- +

+2Ps _-2sin$ lcos2esin2¢'cos_'-2("- $1- sin_lcOS_l)sinecose sin¢'cos2$,

-2--sin_b3 1(2+ c°s2$1)sin2ec°s3_'] } (III-97)

We now total the torques and forces for the u and v cases. The total of Equations

(III-86) and (III-92)

LhlbU v = LhlbU + LhlbV = 0
(III-98)

Likewise from Equations (III-87) and (III-93)

{ E'"Lh2bu v = Lh2bu + Lh2bv = Po_'lr2sin¢ , (1-Ps) (-_ - _l)sin8
cose sin_'(sin_- cos ¢') -

-4sin¢l(COS2e sin2¢, _ sin2esin¢cos¢, + sin2_os2¢ ,) -

-2 (-_- $1 - sin$1c°s_)sin0c°sSsin¢'c°s¢' : 3 _,D_t' (1 - siff_cos¢') sihC: cos_'

I-4sin_blCOS2e sin2+2p (l-sin¢cos ¢') _ ' - 4(_- -_l-sin_blC°S_bl)sinSc°sOsin¢'c°s¢' -S

4 sin@l(2+cos2 ']}--_- _i) sin28 cos2_ (III-99)

The third component of Lhbuv is found by adding Equation (III-88) to (III-94),

_: 142

Lh3bu + Lh3bv = Lh3bu v = 0

The total force is likewise found by adding Fbu + Fbv.

of Equations (III-89) and (III-95).

(111-100)

The first component _ the sum



FbluV Fblu Fblv ) (_- +
= + = P _" r sine' 1-o 1 Ps ¢1) cos2e sin ¢'

,_ 4 _ •y _)l)COS20sin3¢,+4sin_blsin0 cosecos_ + 3- _Pd cos{} sin2¢ ' + 2p ( -_- - +
S

•17 20 , 2 ,
'+ 2( _ @1 - sLnV)lC°S@l)Sin sin_bcos

2
+8sin$1sin0cos0sin ¢'cos

(III-101)

The total of Equations (III-90) and (III-96) gives the second component,

Fb2uv = Fb2 u + Fb2 v = 0
(III-102)

The total of Equations (II!-91). and (III-97) giv, eS.tho third component,

(, EFb3uv = Fb3u + Fb3v = Pol _ r sin_' 1-Ps) 4(_---$1)sin0cos0sin¢' - 4sin_blsin 0cos¢ -

2 I_4s in_blcos20 sin2¢,-3- YPd sinOc°s2¢' + 2Ps cos¢' - (III-103)

- 4 2 2 3 --_-4 (-_-- $1 sin$lCOS_bl)sin{}cos0sin¢'cos2_' -_-sin@l(2+cos @l)sin 0cos ¢

The offset torque components are found using Equation (III-49) for the uv case,

Lxbuv = x X Fbu v (III-104)

or in components,

LxblUV = YL Fb3uv

Lxb2u v = z L FbluV - XoFb3uv

(III-105)

(III-106)

Lxb3u v = -YLFbluV
(III-107)

since Fb2uv = 0 in Equation (III-102). The other two force components are found in

Equations (III-101) and (III-103).
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CaseWhen¢' < 0on Longitude Sides Fartherest from Sun

Figure III-.7 shows the area in the i j k coordinate system and the related vectors.

These are constructed like those in Figure III-5.

Ax

i....--AI\ '"i..../AI/ ,................

-_ _,.._o_--...b".................."/JI!! __' I

ii_-,_ / .....iJi._.2-_

,_ "el

I

Figure III-7

-- -- m

Therefore we again have s and x unchanged, dAb =dA__ , dA =dA_ , nbu,2 =:_, _, u u bv v . _

n' = n' = - ' = - for all positions. Therefore dFbu dF' andbu' nbv-, by' hbu l_u, and hbv v = bu

d Fbv = d F1bv" Also the integrations are over the same regions as for Figure III-6.

Case uv Equations (III-47) through (III-49), not summed over all the longitude wires, become

Lbu v = Lbu + + - - (III-108)v = Lhbu bv bu bv

Lxbuv= Lxb u+ =_X + ) =xXv u bv buv

Then Equation (III-108) becomes

Lbuv = Lhbuv -- Lxbuv (III-109)



Case uv' Equations (III-74) through (III-78), not summed over all the longitude wires,
become

uv _,u a_v u bv u xbv

-", =/fll_ Xd_ ., =-fhb X dFbu "-'Lhbu u bu u = -Lhbu

-' d-  v- bvL' = X =- X =
hbv v v v

....... x - buv ExL' --L x + L x :xX(Fbu+ ) = X :xbuv bu bv v buv

Then Equation (III-110) becomes

L' = (III-111)buv - Lhbuv - Lxbuv

where the components of Lhbuv are respectively Equations (III-98), (III-99), (III-100), and
. o

the components of x X Fbu v = Lxbuv are gwen m Equations (III-105), (III-106) and (III-107).

With the back surfaces shaded by a ratio of K 1, the total uv torques, front and back
are

LBU v = Lbu v + K 1 I_u v (III-112)

Equation (III-112) is written for only one longitude wire. This equation must be piece-

wise integrated over ¢' from ¢' = 0 to ¢ ' = 0. This integration is rather lengthy so we may

resort to numerical summation. Since there are many thousands of wires, we approximate

this summation by saying N w wires produce identical torques. Since LBU V is a function
only of ¢' we write this weighted summation of every N wires as

W

m
w

LBUVT =_LBu V (¢') _Nw _ LBUV (j Nw, _ ¢_) (III-i13)
j--1
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where m is the number of terms of the summation. If this is a chosen constant, N

found by'he limits of ¢' being from 0 to e. Then at the upper limit, w

is

m N b¢'=O
W W

then

e
N -

w m 5¢'
W

(III-ll4)

Equation (III-57),and (III-114)substitutedinto (III-113)gives

m
w

LBUVT m a BUV
w w j=l w

(III-115)

Let the total torque due to all four cases be /_TT' then

= + +
T T LBT LBUVT (III-116)

We now have all the cases of torques. We are now interested in combining the different

cases to find the total torque. To do this we define a short hand notation in terms of Equation

numbers. These equation numbers are written as elements of non-transformable matrices.

For example, the components of L_ are found in Equations (III-26), (III-28) and (III-29) re-

spectively. In the following equati__._s, which contain equation numbers, the Roman numeral

II'I is omitted. We now define the LaT as the matrix,

LaT = 28 II (III-117)
29

These non-transformable matrices are all written with double bars so as not to confuse

them with transformable matricies suah as
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j,

• " Likewise

LaT =

36

38

39
(III-118)

Then from Equations (III-43),(III-117)and (III-118)

26136f 28 + K 1, 38

29 + K1.39

(III-119)

Equations (III-67), (III-68), (III-69) and (III-70) produce

54 - YL" 65 .

58- z L. 62+ _(o'65

60 + YL" 62

(III-120)

and Equation (III-77)gives

_T = -I_hbT - LxbT =
I-54 - YL'65
-58 zL-62+x .65o

-60 + YL" 62

(III-121)

Then substituting (III-120) and (III-121)into (III'78),

LBT = I_bT + K1 I_T = (1-K1).58 - (I+K1) (zi_.62 - x o.65)

(1-K1).60 + (I+K1) YL'62

(III-122)
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Equations (III-119) and (III-122) added gives,

LAT + LBT =

26 + K 1.36 + (1'K1).54 - (I+K 1) YL'65

• - •65)
28+ K 1 38 + (1-KI).58 - (I+K 1) (zL.62 x °

29 + K1.39 + (1-K1).60 + (I+K 1) YL'62

(III-123)

Since the torques represented by Equations (III-54) and (III-60) are zero, (III-123)
reduces to "

LAT+LBT=
I26 + K I.36 - (1+K1) YL'65
28 + K1.38 + (I-K1). 58 - (I÷K1)•(zL. 62 -x o'65)

29 + KI_39 + (1+K1) YL'62

(III-124)

From Equations (III-98), (III-99) and (III-100)

Lhbuv =

98

• 99

100

(III-125)

and from Equations (III-101), (III-102) and (III-103)

101

102

103

(III-126)
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Equations (III-105), (III-106) and (III-107) give

U107

YL" 103

z L.101 -x..103o

-YL" 101

Then from Equations (III-109), (III-125) and (III-127)

98 - YL •103

13nDxuL'uv=L"'uv-I_'uv = 99-(ZL .1_01- Xo'103

100 + YL "101

(III-127)

••ij



This equation reduces to

- yL" 103

99 - zL 101+x 103o

+ YL" 101

(III-128)

since the torques Ln Equations (III-98) rand (III-100) are zero. Likewise Equation (!II-1!1)

gives

IfyL1°3l/I_ =-Lhb -I_xb = -99 z L 101 +x..103
UV UV UV O

+ YL 101

(III-129)

and Equation (III-112) with (III-128) and (III-129) becomes

_BUV
"*t--_ov+Ki_uv

- (I+KI) YL" 103

- •103
(I-KI).99 (I+KI) zL. i01 + (I+KI) x°

+ (1+K1) YL" 101 (III-130)

Equations (III-99),(III-101)and (III-103)are in terms of _' and _)i" Equation (III-82),

tan ¢ ',h
COS

_i - tan e

gives $1 in terms of ¢'. These three equations are now summed according to Equation (III-115).
Let this- summation be symbolized in the non-transformable matrices as a _ sigma preceding

the equation number to be summed• For example,

where each _b1

m

Or w_---- _ _ (¢,1m a buv
w w j=l LJ' 2

is replaced by $1
-1

= COS
tan ¢'* 0
tan 0 and each ¢' is then replaced by ¢' = j m "

W

*Note 0 < _b < ?r
1
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Then from Equation (III-130)

L_BUVT = '

- (I+K1) YL" _" 103

(1-K1)'_99 - (l+K1)(z L'_ 101 -x o* _ 103)

+ (I+K1) YL" _' 101

(III-131)

and substituting (III-124) and (III-131) into (III-116) gives

26+K 1" 36 -(I+K1) YL" 65 -(I+K1) YL" D103

28+K 1• 38+(l-K1) "58-{l+K1) (z L" 62-Xo" 65)+ {l-K1) • _99-(1+K1) (z L" _101 -x o" _ 103)

29+K 1" 39 +(I+K1) YL" 62 +(I+K1) YL" _101

(III-132)

The torque represented by Equation (III-132) is due to the wire surfaces that are

radial. This torque must be added to the torques on the spherical surfaces found previously.

Constants of ¢

J1 =n2 - ¢-sin¢c°s ¢

J2 =sine {2 +cos 2 ¢)

_ 1 2 1
J3 2 cos ¢ -_ sin 4¢

J4 =-sine cos¢ + sin 3¢ cos¢

1 _. 1 3
J5 = +8 sin¢ (_ _ + sine cos ¢ -2 sin 3¢ cos ¢) -_ cos

J6
=-sine cos 2¢ + sin 3¢ cos 2¢

J7 = n_2 - ¢ + sine cos¢ - 2 sin3¢ cos¢

@
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